Mapping pollution exposure and chemistry during an extreme air quality event (the 2018 Kilauea eruption) using a low-cost sensor network

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; The Kohala Center, Waimea, Hawaii Island, HI 96743; and School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822

Edited by Ronald C. Cohen, University of California, Berkeley, CA, and accepted by Editorial Board Member Akkihebbal R. Ravishankara May 4, 2021 (received for review December 11, 2020)

Extreme air quality episodes represent a major threat to human health worldwide but are highly dynamic and exceedingly challenging to monitor. The 2018 Kilauea Lower East Rift Zone eruption (May to August 2018) blanketed much of Hawaii Island in “vog” (volcanic smog), a mixture of primary volcanic sulfur dioxide (SO2) gas and secondary particulate matter (PM). This episode was captured by several monitoring platforms, including a low-cost sensor (LCS) network consisting of 30 nodes designed and deployed specifically to monitor PM and SO2 during the event. Downwind of the eruption, network stations measured peak hourly PM2.5 and SO2 concentrations that exceeded 75 µg m−2 and 1,200 parts per billion (ppb), respectively. The LCS network’s high spatial density enabled highly granular estimates of human exposure to both pollutants during the eruption, which was not possible using preexisting air quality measurements. Because of overlaps in population distribution and plume dynamics, a much larger proportion of the island’s population was exposed to elevated levels of fine PM than to SO2. Additionally, the spatially distributed network was able to resolve the volcanic plume’s chemical evolution downwind of the eruption. Measurements find a mean SO2 conversion time of ~36 h, demonstrating the ability of distributed LCS networks to observe reaction kinetics and quantify chemical transformations of air pollutants in a real-world setting. This work also highlights the utility of LCS networks for emergency response during extreme episodes to complement existing air quality monitoring approaches.

Significance

Poor air quality is a global public health issue, contributing to millions of premature deaths per year worldwide. Low-cost air quality sensors are a promising tool to improve monitoring capabilities. In this study, we built and deployed a low-cost sensor network for emergency response during an extreme air quality event, the 2018 Kilauea Lower East Rift Zone eruption. This network was used to estimate fine-scale population exposures to multiple pollutants, to measure the chemical transformation of volcanic emissions, and to provide real-time observations as part of emergency management efforts.

The authors declare no competing interest.

This article is an PNAS Direct Submission. R.C.C. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

1Present address: Department of Geography and Environmental Sciences, University of Colorado, Denver, CO 80204.
2To whom correspondence may be addressed. Email: benjamin.crawford@ucdenver.edu or jhkur@mit.edu.
3Present address: QuantAQ, Inc., Somerville, MA 02143.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025540118/-/DCSupplemental.

PNAS 2021 Vol. 118 No. 27 e2025540118
https://doi.org/10.1073/pnas.2025540118
were destroyed, and thousands of residents were displaced. The elevated SO2 emissions led to exceedingly poor AQ not only in the immediate vicinity of the eruption but also across the wider region. The order-of-magnitude step change in SO2 emissions and resulting secondary PM was clearly visible from space (Fig. 1 A and B) and was also measured by the ground-based regulatory network (Fig. 1 C and D).

The measurements in Fig. 1 established the LERZ eruption as an extreme AQ event, and recent studies have used satellite and in situ measurements (15–17) to explore air quality implications and plume dynamics during the eruption. For example, analysis of regulatory network data found that 24-h average PM2.5 concentrations exceeded US Environmental Protection Agency (EPA) AQ thresholds eight times during the eruption in certain locations, compared to zero times during the previous 8 y (17). However, such measurements are typically designed to monitor regional-scale AQ and therefore provide limited details about the fine-scale spatiotemporal distribution of air pollutants. Satellite measurements are limited both spatially and temporally (because of overpass intervals of 1 to 3 d, pixel sizes of ~tens of km, cloud cover, and limited vertical resolution). Ground-based regulatory measurements provide improved temporal resolution and networks are strategically placed to monitor ambient AQ in populated regions but are generally not designed to monitor fine-scale exposure from dynamic plumes during extreme events. On the Island of Hawai‘i, the average resident lived ~17 km from the nearest regulatory AQ station (closer than the United States average of 22 km), and while this network provides continuous, high-quality measurements at key locations, this is too sparse for high-resolution estimates of residents’ pollutant exposure given the high temporal and spatial variability of the volcanic plume.

Results and Discussion

In order to complement existing measurements and provide improved estimates of the pollutants’ spatial variability, human exposures, and rate of interconversion, we built and deployed a network of low-cost sensor (LCS) nodes to measure SO2 and PM throughout the region. The relative affordability and small size of LCS enables many network nodes to be deployed within a small area, thereby providing distributed measurements with a much higher spatial resolution than is possible with traditional AQ networks (18–20). LCS networks have recently been deployed in different locations worldwide (20–23); while LCSs are generally less accurate and precise than regulatory AQ instruments, recent work has demonstrated that LCS calibration via colocation with regulatory-grade monitors can enable robust measurements (24–26). Our deployment during the eruption occurred in two phases. First, an initial small-scale deployment in the LERZ, enabling civil authorities and local residents to monitor SO2 levels and make emergency management decisions, was carried out beginning May 14. These sensors had already been built and used in Hawai‘i (24) and were among the first SO2 measurements in the area. Next, a total of 30 new sensor units were built (measuring SO2 and PM), calibrated using the regulatory stations’ measurements, and deployed throughout the Island beginning May 23. Details of the sensor unit design and calibration are provided in the Materials and Methods and SI Appendix. After this deployment, the network had one node per ~5,800 people and the average resident lived 4.6 km from an AQ measurement (SI Appendix). By comparison, the US- and globally averaged distances to a regulatory-grade AQ measurement are 22 km and 220 km, respectively (2).
Average SO$_2$ and PM levels measured by a subset of the network during July 15 to August 1 are shown in Fig. 2. This subset (20 PM$_{2.5}$ and 17 SO$_2$ sensors) includes all sensors that operated nearly continuously throughout this measurement period (the full timeseries is shown in the SI Appendix). Both the regulatory and LCS networks measured similar overall trends in volcanic pollution downwind of the volcano; the highest SO$_2$ concentrations were observed just downwind of the eruption, whereas the highest PM$_{2.5}$ levels were further downwind, along the western (Kona) coast. LCS network stations measured peak hourly SO$_2$ concentrations $>1,200$ parts per billion (ppb) and peak hourly PM$_{2.5}$ concentrations >75 µg \cdot m$^{-3}$ (SI Appendix).

The LCS network also revealed pollution gradients in populated areas that were imperceptible to the regulatory network, with substantial variability on finer (5 to 20 km) scales. For example, along the Kona coast, average PM$_{2.5}$ loadings at nearby sites varied by more than a factor of two (from 9 to 25 µg \cdot m$^{-3}$) during the measurement period, likely because of differences in elevation, topography, and local winds. Sensors were also placed in areas that previously had been unaffected by "vog" and were without long-term monitoring stations, revealing elevated levels of pollutants there as well. For instance, in areas of the northern Kona coast, average PM$_{2.5}$ ranged from 5 to 18 µg \cdot m$^{-3}$ with several short-lived episodes (<8 h) in which PM$_{2.5}$ exceeded 30 µg \cdot m$^{-3}$.

The high spatial resolution of the LCS network also enables fine-grained estimates of residents’ exposure to pollutants in terms of both average exposures (Fig. 3A and B) and hourly exposure distributions (Fig. 3C and D). Fine-grained exposure estimates have long been viewed as a primary advantage of distributed sensor networks (e.g., ref. 18), but there exist few, if any, examples of such networks used to quantitatively estimate population-wide exposure distributions. With this sensor-based analysis (covering the >70,000 people within 5 km of a sensor node), we are able to resolve the fine structure of pollutant exposure during this extreme AQ event, analogous to previous global population-scaled annual exposure estimates based on satellite data and models (27). The choice of a 5-km buffer is somewhat arbitrary but is intended as a compromise between population coverage (SI Appendix) and spatial variability of point measurements as the plume chemically transforms and dynamically adjusts to underlying surface conditions. During the eruption, the highest SO$_2$ levels were experienced primarily by those just downwind of the vents (Fig. 3A), with 5.3% of the sampled population exposed to elevated (>35 ppb) average levels of SO$_2$. The LCS SO$_2$ hourly exposure distribution (Fig. 3C) shows an extended high-concentration tail, with 2% of all hourly exposures exceeding 75 ppb (the US EPA 1-h standard, though Hawai‘i uses the pre-2010 threshold of 140 ppb). In comparison, cumulative hourly SO$_2$ exposures from the regulatory network (composed of five stations covering nearly 30,000 people) are 25% of the LCS network’s cumulative total (SI Appendix, Fig. S9). However, the population-weighted average SO$_2$ concentrations measured by the two networks are not significantly different (9.8 ppb and 9.2 ppb) because of highest SO$_2$ concentrations occurring primarily in sparsely populated areas (SI Appendix, Fig. S8).

Exposure to secondary PM$_{2.5}$ was more widespread; elevated average levels (>10 µg \cdot m$^{-3}$, World Health Organization annual standard) were experienced by nearly half (46.7%) of the sampled population (Fig. 3B), with 6.7% of hourly exposures exceeding 35 µg \cdot m$^{-3}$ (the US EPA 24 h standard). The LCS PM$_{2.5}$ population-weighted distribution (Fig. 3D) also displays a clear bimodal structure, representing the overlap of spatial population and plume dynamics; a large fraction of the sampled population (mostly in the Hilo area) lives upwind of the volcano and therefore mostly experienced background levels of PM$_{2.5}$, whereas population centers downwind of the vents experienced uniformly elevated PM levels over the entire course of the eruption. Because of the greater number of LCS stations in densely populated areas, PM$_{2.5}$ concentrations were more widely distributed than SO$_2$, but peak concentrations were greater for PM$_{2.5}$. The LCS PM$_{2.5}$ cumulative total (Fig. S9) is 30% of the regulatory network PM$_{2.5}$ cumulative total, whereas the population-weighted distribution is nearly identical (Fig. S8).

Fig. 2. Average concentrations of SO$_2$ (A) and PM$_{2.5}$ (B), as measured by the LCS network (colored circles) and the regulatory network stations (gray circles). Data are from a 15-d period from July 15 to August 1, 2018; only the LCS nodes that were in near-continuous operation during this time are shown. For SO$_2$, 17 sensors are shown, accounting for 70,414 people within 5 km. For PM$_{2.5}$, 20 are shown, accounting for 86,856 people within 5 km. In total, there are 16 stations with both SO$_2$ and PM$_{2.5}$ measurements, accounting for 73,013 people within 5 km (Fig. 3). The full time series for all sensors are shown SI Appendix, Figs. S3 and S5.
regions exposed to high levels of PM$_{2.5}$, cumulative hourly PM$_{2.5}$ exposures from the regulatory network during the study period are 28% of the LCS network (SI Appendix, Fig. S9). Additionally, the population-weighted average PM$_{2.5}$ concentration from the LCS network is substantially higher than that of the regulatory network (12.9 μg·m$^{-3}$ to 8.2 μg·m$^{-3}$; SI Appendix, Fig. S8), demonstrating the importance of dense monitoring networks to complement existing measurements for accurate population-wide exposure distributions.

The highly variable concentrations (Fig. 2) and exposures (Fig. 3) throughout the island arise not only from differences in location relative to the fissures and the plume but also from the dynamic chemical evolution of the volcanic pollutants (the oxidation of SO$_2$ to form PM). Such secondary transformations of pollutants represent major challenges in AQ monitoring, which spatially dense LCS networks are well-suited to address. The high spatial resolution of our LCS network, with stations placed at different distances (i.e., plume transport times) downwind of the fissure, enables this chemical transformation to be mapped. Fig. 4 shows the evolution of the plume chemistry (described by the measured SO$_2$/PM$_{2.5}$ ratio) as a function of plume age, which is calculated using an atmospheric dispersion model (SI Appendix). The ratio is highest at stations closest to the eruption, with a clear decay as the plume ages.

The rate of change in plume composition (Fig. 4) implies a mean SO$_2$ loss rate (k_{SO_2}) of 7.6 × 10$^{-6}$·s$^{-1}$ (±4.8 × 10$^{-7}$·s$^{-1}$) for an atmospheric SO$_2$ oxidation lifetime (τ_{ox}) of 36 h. While there are several uncertainties and assumptions in this calculation...
aiding in emergency response, measuring populations’ exposure to pollution, and characterizing regional atmospheric chemistry. Key features of this network were the individual nodes’ low cost, small physical footprint, stand-alone power, and real-time communications, all of which allowed for rapid, flexible deployment. Two nodes were even lost in the lava flow, highlighting the resilience of networks composed of multiple low-cost nodes. This environment—with its small number of pollutants, point sources emitting into a clean environment, and relatively simple chemistry and meteorology—is in many ways an ideal scenario for monitoring AQ using LCS. Nonetheless, this general approach can be extended to other, more complex environments as well. The present work highlights the need for multipollutant LCS nodes that are already calibrated and readily deployable; the characterization of other extreme AQ events, such as wildfires and urban smog, requires that these nodes measure a number of additional pollutants (not just PM and SO2 but also O3, NO2, and CO) as well as species that can provide insight into pollutant sources and secondary chemical processes (such as NOx, VOCs, and CO2). Furthermore, knowledge of background pollutant levels and atmospheric dynamics is necessary to isolate contributions from the event and constrain reaction kinetics. These are included in the present analysis and will be even more important in regions with higher baseline concentrations or more complex meteorology. This underscores the need for improved characterization of regional background pollutant levels (from prior regulatory, satellite, or LCS measurements) and local meteorological conditions (from wind measurements and dispersion models) in such cases. Because of the chemical complexity of wildfire and urban smog pollution, LCS measurements will also benefit from future technological improvements, such as in-line dryers to obviate the need for uncertain relative humidity corrections, and low-cost techniques for measuring PM and VOC composition to provide insight into pollutant sources, chemistry, and impacts. LCS networks thus offer the potential for characterizing pollutant exposure and chemistry under a wide range of conditions and represent an important high-resolution component of multiplatform systems to monitor and characterize extreme AQ events.

Materials and Methods

LCSs and Network Design. Custom multipollutant AQ sensor (MPAQS) sensor nodes were built to measure sulfur dioxide gas (Alphasense SO2-B4 electrochemical sensor) and PM (Alphasense OPC-N2) concentrations, as well as auxiliary measurements of air temperature (TA) and relative humidity (RH). Additionally, six SO2-only nodes (24) and five PM-only nodes (Plantower PM5003 nephelometer) were used to supplement the MPAQS network. Communications and data transmission are via 3G cellular microcontroller (Particle Electron). Sensor units are powered by rechargeable batteries and solar panels (Voltaic Systems). All sensors sample at 1 Hz and data are recorded to local storage, with 1-min averages transmitted to a custom cloud database. Total materials cost for each MPAQS node is approximately 1,000 US dollars.

The SO2 and PM sensors were calibrated via colocation outdoors with regulatory-grade monitors run by the Hawaii Department of Health (33). SO2 calibration algorithms are based on sensor-specific nonlinear relations to air temperature and linear sensitivity to ambient SO2 concentrations (SI Appendix). PM mass measurements are statistically corrected for ambient RH due to hygroscopic uptake by sulfate aerosols (SI Appendix). This type of field calibration approach is advantageous because instruments are exposed to dynamic and realistic ambient environmental conditions, which can be challenging to achieve under controlled laboratory settings (e.g., ref. 24). Sensor nodes were placed primarily at schools, public health clinics, and community centers in residential areas, and each individual setting and placement was unique according to specific site characteristics and constraints (SI Appendix). Nodes were placed 3 to 15 m above ground level on rooftops (on tripods, electrical masts, etc.) or in open areas on facility grounds (on masts, tree trunks, and utility poles). Although sensors were deployed to more than 30 locations around the Island (SI Appendix), several nodes experienced intermittent communications interruptions, power issues, or sensor component failures (in particular, several SO2 electrochemical...

2. R. V. Martin et al., No one knows which city has the highest concentration of fine particulate matter. Atmos. Environ. 3, 100040 (2019).

