




and 8 fisheries managers. Computing the matrix distances be-
tween pairs of cognitive maps, both within groups and across
groups (Methods), revealed that individuals within each group
construct maps that are more similar to one another compared
to members of other groups (SI Appendix, Fig. S4). These results
confirmed the assumption that members of the same stakeholder
type represent more correlated knowledge.
Aggregation of individual cognitive maps within stakeholder

types resulted in three averaged models representing the percep-
tion of three homogeneous groups (SI Appendix, Figs. S5–S7).
Group aggregated models varied widely in the number of nodes
and connections (SI Appendix, Table S1), as well as the qualitative
composition of concepts used to represent social-ecological rela-
tionships. For example, recreational fishers placed more emphasis
on social concepts influencing fish populations (e.g., economy,
coastal development, socioeconomic status of residents), while
commercial fishers tended to incorporate more biological con-
cepts (e.g., striped bass interactions with other species like
mackere and herring), and managers emphasized management
aspects (e.g., bycatch, poaching and illegal catch, undersized fish
mortality) more frequently than other groups (SI Appendix, Fig.
S9). These results may provide support for the claim that groups’
specific interests drive their mental models of the external world.
Additionally, aggregation across stakeholder types yielded a “di-
verse crowd model” (Methods). This latter model integrated the
diverse knowledge of all three stakeholder-specific groups by
preserving a median level of information presented by them (SI
Appendix, Fig. S8).
Experts’ subjective evaluations of homogeneous group and

diverse crowd models first explored the “model structure” based
on the patterns of causal relationships that represent 1) striped
bass predator-prey food web, 2) the effect of fishing pressures on
striped bass, 3) striped bass connection to ecology and habitat, 4)
socioeconomic stressors, and 5) environmental stressors affecting
the striped bass population (Fig. 1A). These causal patterns
represent interdependences between 15 concepts that are shared
among all groups and, therefore, used for comparisons. In ad-
dition, experts’ evaluations were conducted to examine the
“model dynamics” based on how models responded to compu-
tational manipulations (i.e., scenarios) of social and environ-
mental stressors (Fig. 1B). These computational manipulations
simulated perturbations in 1) inclement weather for fishing, 2)
water temperature, 3) water quality, 4) price of fish, 5) demand
and consumption, and 6) poaching and illegal catch.
Experts, on average, rated the diverse crowd model as the

most accurate map among the four models because it most ad-
equately and correctly represented the causal relationships and
feedback loops in the striped bass fishery SES. Overall, scientific
experts assessed that the causal structure of the crowd model was
65% accurate, followed by 55% accuracy for fisheries managers,
48% for recreational fishers, and 43% for commercial fishers
(Fig. 2A). Similarly, experts rated the crowd model as the most
accurate regarding models’ responses to simulated manipula-
tions of social and environmental stressors. On average, scientific
experts determined that the diverse crowd model was most ac-
curate (75%) regarding simulated dynamics, while the fisheries
managers’ model ranked second in this category with 50% ac-
curacy. The models of commercial fishers and recreational
fishers were assigned 39% accuracy by the expert panel (Fig. 2B).
All experts located the diverse crowd model in the upper-right
quartile in Fig. 2C, indicating accurate structure and dynamics,
while for homogeneous models, there exists at least one expert
that located the model in one of the quartiles that represent
inaccuracy in either structure or dynamics.
Also, experts’ qualitative evaluations of “model composition”

revealed the number of false negatives or false positives (i.e., not
including necessary system components or including unnecessary
and redundant ones, respectively). These qualitative assessments

included all concepts, aside from 15 overlapping concepts that all
three stakeholder groups mentioned in common and, therefore,
complemented experts’ subjective evaluations of model structure.
Comparing the proportion of “false” errors in four aggregated
models revealed that, on average, the expert panel identified 20%
of the crowd model’s composition as false positive or false negative,
whereas false error rates ranged from 32 to 55% for the stakeholder-
specific models (SI Appendix, Figs. S15 and S16).
In addition, we evaluated the extent to which system com-

plexities were captured by each model via a stochastic network
analysis that measured the prevalence of complex micromotifs in
a model (i.e., complex microstructures including bidirectionality,
indirect effect, multiple effects, and feedback loop) (see ref. 28).
Fig. 3 shows the deviations of motif counts from their expected
value as a measure of motifs’ prevalence (Methods). Our results
demonstrated that the aggregated model of the diverse crowd
had a higher prevalence for all complex motifs compared to the
expectation, thereby representing a higher perception of complex
causality. The aggregated model of recreational fishers also had
high prevalence for all tested motifs while managers had a low
prevalence of the motif “indirect effects,” indicating a lower ap-
preciation of cascading impacts (29). The aggregated model of
commercial fishers, however, had low prevalence for all tested
complex motifs, indicating that commercial fishers tended to per-
ceive the system as more linear with hierarchal casual structures.
Finally, results of the MCA with 10,000 reproductions of

cognitive maps distributions revealed that the aggregated models
of randomly generated diverse crowds, as opposed to homoge-
neous groups, demonstrated higher similarity to a benchmark
model of EBFM for striped bass (Fig. 4 A and B). Additionally,
virtual combinations of random individuals from three stake-
holder types resulted in groups with different levels of diversity
(Fig. 4C). The model computed the success of these virtual
groups via measuring their matrix similarity to EBFM and pre-
dicted that group diversity and performance (i.e., success) were
positively correlated (Fig. 4D).

Discussion
Our results provide insights into how knowledge diversity affects
the success of a group in effectively representing a complex
problem with interconnected social and environmental dimensions
(i.e., a SES). We used an example of striped bass fisheries in MA to
implement our experiment in a real-world context with local indi-
viduals. This special example is a natural resource system with di-
verse stakeholders, which represents a wide range of complex
feedback between humans and the natural ecosystem. Our results
may therefore apply to a more general domain of complex prob-
lems (e.g., disease spread, large-scale natural disasters, social in-
equities) that are shared among academics, policymakers, and
businesses and impact large numbers of individuals who collectively
may help us understand and address these issues.
In our case, individuals interact with natural resources, observe

changes, and sample ecosystems in different ways, and this may
lead them to construct diverse perceptions about social-ecological
interdependencies (5, 10). Yet, we showed that LK of stakeholders
in a SES are more likely correlated with their peers of the same
stakeholder type than members of other types (SI Appendix, Fig. S3).
This could be a consequence of similarities in values and interests,
the similar ways they use and interact with natural resources, their
more frequent communications and knowledge sharing, and their
likely exposure to a similar set of information sources (e.g., media
outlets). Therefore, each group may accumulate knowledge that is
biased to some degree (SI Appendix, Fig. S9).
Consistent with past theoretical studies (e.g., “diversity trumps

ability” theorem) (18), we found that the aggregation of LK
obtained from a diverse group of stakeholders produces a system
representation that outperforms those of homogeneous groups.
However, to be successful, the aggregation needs to mediate the
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accumulation of likely correlated knowledge of members of the
same stakeholder type, filter out the biases associated with each
group’s LK, and most effectively combine diverse expertise
across multiple groups (30, 31). To that end, our aggregation
method expands prior theoretical and empirical findings about
the optimum aggregation of judgments or predictions of un-
known quantities from a group of independent individuals—
traditionally known as the wisdom of crowds (WOC) effect
(32)—to instead aggregate mental models (Methods).
In this study, we used both subjective and objective evaluations

to measure the performance of aggregated models. Although
experts who subjectively judged the accuracy of the stakeholder-
driven models represented a wide range of academic disciplines
and professional expertise (e.g., fisheries ecology, economics), a
clear majority of experts rated the diverse crowd model as more
accurate than the homogeneous models. Additionally, stochastic
network analysis revealed that the diverse crowd model dem-
onstrated a more thorough representation of complex micro
motifs as building blocks of complex causality. While, the higher
prevalence of complex causal representations does not neces-
sarily relate to how well the model works, when considered in
conjunction with the experts’ subjective evaluations, our study
suggests that pooling diverse crowds’ LK, as opposed to homoge-
neous groups, may result in system models that are more complex
and more closely match the opinions of a group of diverse experts.
Similar to our experiment with actual human subjects, results

of random experiments with virtual agents suggested that more
diverse groups better succeeded in system modeling compared to

homogeneous ones (Fig. 4). To measure the success in MCA, we
compared each group’s aggregated model to an EBFM model.
Although an EBFM model does not fully represent the complex
reality of the social-ecological interdependencies and is not
considered a ground truth, it takes into account striped bass in-
teractions with other species in the food web; the effects of envi-
ronmental changes, pollution and other stressors on habitat and
water quality; and the impact of socioeconomic conditions, and it is
recommended by NOAA Fisheries (27). Therefore, it represents a
credible reference point for determining social-ecological interde-
pendences in striped bass fisheries (SI Appendix, Fig. S17).
These results have important implications for the sustainability of

SESs: First, addressing uncertainty is a challenge for policy and
decision-making, especially in data-poor situations. Uncertainties
are typically related to the absence of empirical data and formal
scientific knowledge (i.e., scientific uncertainties), and the inability
to predict management success/outcomes (i.e., management un-
certainties). Our study provides evidence for the benefits of pooling
LK held by diverse groups of local stakeholders to overcome both
types of uncertainties. As such, even in data-rich situations, scien-
tific communities should bring in inputs from local people to inform
resource and environmental management to not only complement
the knowledge developed by professional science, but to also
overcome management uncertainties (33).
Second, our findings have applications for designing inclusive

processes and adaptive comanagement practices (34). Such ap-
proaches encourage the participation and involvement of relevant
stakeholders and may enhance the credibility and legitimization of

0

0.5

1

0 0.5 1

Recrea�onal fishers
Commercial fishers
Managers
Diverse Crowd0

0.2

0.4

0.6

0.8

1

R
ec

re
at

io
na

l
fis

he
rs

C
om

m
er

ci
al

fis
he

rs

M
an

ag
er

s

D
iv

er
se

 C
ro

w
d

)sc i
ma nyd( erocs  dezi la

mro
N

0

0.2

0.4

0.6

0.8

1

R
ec

re
at

io
na

l
fis

he
rs

C
om

m
er

ci
al

fis
he

rs

M
an

ag
er

s

D
iv

er
se

 C
ro

w
d

)erutc urts( erocs de zila
mro

N

A

B

Accuracy of model dynamics

Ac
cu

ra
cy

 o
f m

od
el

 s
tru

ct
ur

e

Accurate Dynamics
Accurate Structure

Inaccurate Dynamics
Accurate Structure

Inaccurate Dynamics
Inaccurate Structure

Accurate Dynamics
Inaccurate Structure

C
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management strategies while resource users, managers, and scientists
bridge their divides and jointly agree on possible management ac-
tions for uncertain ecosystems (35). Furthermore, an inclusive pro-
cess with buy-in from stakeholders could have positive feedbacks,
such as greater support for and compliance with management
measures. Despite these promising successes, adaptive comanage-
ment practices often suffer from a lack of readily available models by
which complex social-ecological interdependences are adequately
described and probable outcome scenarios are anticipated. We
therefore recommend proactively involving local stakeholders in
complex system representations and modeling by pooling their LK
resulting from online mental modeling means.

Materials and Methods
Mental Models and FCMs. In this study, we used FCMs to represent stake-
holders’ mental models about striped bass fisheries in MA. To understand
stakeholders’ perceptions and knowledge about natural resources, re-
searchers have suggested the importance of eliciting and measuring mental
models (11, 36–39). However, many mental model elicitation techniques
yield qualitative representations of associative rules between concepts/ideas,
with few standardized methods to compare, aggregate, and computationally
manipulate them (37). Here, we used FCM—a semiquantitative technique—to
bridge the divide between highly computational system modeling and
easy-to-construct qualitative cognitive or concept mapping. FCMs are graphical
models of an individual’s perception showing a network of cause-and-effect
relationships (edges) among different concepts (nodes) and can be computa-
tionally manipulated due to the numerical parametrization of the strength of
causal relationships. These models are therefore simulation tools that can be
used to assess an individual’s knowledge about dynamics of the system they
represent (40). By increasing or decreasing a concept in the map (e.g., water

temperature), “what-if” scenarios can be simulated using the autoassociative
neural network method (41) (SI Appendix, Text S1).

Online Crowdsourcing Implementation. This study was conducted with ap-
proval of Michigan State University’s Institutional Review Board (IRB)
(STUDY00000074), and informed consent was acquired from all participants.
We used a contact list of recreational and commercial fishers licensed in MA,
and a contact list of fisheries managers including individuals from NOAA,
the Massachusetts Division of Marine Fisheries, and the Atlantic States Ma-
rine Fisheries Commission. An iterative sampling approach was used, until
we reached a desired sample size of 10–15 responses from each type of
stakeholders. Individuals who indicated their willingness to participate re-
ceived instructions through email. Each individual participated indepen-
dently in an online mental modeling survey, where they used an online
mental modeling technology (www.mentalmodeler.org) to make an FCM
about striped bass population dynamics and social-ecological factors that
impact fish population and fishery management.

Participants were given a written step-by-step manual (SI Appendix, Text S2)
and a series of short videos instructing them how to brainstorm, identify, and
add components via an online graphical interface—all concepts that they be-
lieve impact either their fishing effort and/or the striped bass population and
fishery. Participants were then asked to use this modeling technology to draw
lines between concepts and assign a relative value between 0 and 1 (either
positive or negative) to each link based upon the degree to which one concept
affects another. This exercise was completed when the participant could no
longer think of additional relevant concepts or linkages among concepts. Par-
ticipants saved their models and sent them to the project’s email address.

The Wisdom of Crowds and Knowledge Aggregation. To aggregate stake-
holders’ LK, we expanded a well-documented method called the WOC (13,
32). WOC refers to the finding that groups of people, under certain
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conditions, are collectively smarter than individuals in problem-solving, de-
cision making, and predicting. Notably, in simple estimation tasks, the av-
erage of individual judgments often outperforms the judgment of the
majority of the contributing individuals and sometimes even the best individual
judge (13). A theoretical explanation for this phenomenon is that there is an
error associated with each individual judgment, and taking the average over a
large number of responses filters out the noise of gross overestimates and un-
derestimates, thus increasing the accuracy of the aggregate response (13, 42).

WOC solutions can be reliable when 1) the study participants represent diverse
opinions, 2) they make their judgments independent of each other and without
outside influences, 3) each individual can draw on their decentralized local
knowledge, and 4) there exist some aggregation mechanisms to combine indi-
vidual contributions into a collective response (13). However, in many real-world
cases, rather than being completely independent, crowds demonstrate “modular
structures,” whereby individuals are more likely socially influenced by their cer-
tain peers (i.e., modules) than by others. Our sample, too, demonstrates modular
structure (SI Appendix, Text S3). In such cases, the WOC effect may be enhanced
once the aggregation takes place in two levels: aggregating responses within the
modules followed by an aggregation across the modules (30, 31).

We expanded these theoretical findings to aggregate individuals’ graphical
cognitive maps from a diverse group of stakeholders. This aggregation requires
each individual cognitive map to be transformed into an adjacency matrix—a
mathematical representation of a directed graph (40). Once the individual
FCMs were standardized (i.e., using unique terminologies for similar concepts)
(see ref. 43) and brought to the same size, maps were aggregated by treating
each element of the matrix as a scalar and creating an averaged model, rep-
resenting the collective knowledge of stakeholder groups. We first combined
individual maps by stakeholder types to form homogeneous, stakeholder-
specific models using the arithmetic mean of their adjacency matrices. Subse-
quently, the more diverse crowd model (including all stakeholder types) was
created through aggregating models across homogeneous groups using the
median of their averaged matrices (SI Appendix, Text S4).

Expert Subjective Evaluation of Models. To evaluate the accuracy and overall
performance of the stakeholder-driven models we conducted in-depth in-
terviews with fisheries experts. This data collection has been determined to
be exempt by Michigan State University’s IRB (STUDY00002479). A pur-
poseful sampling method was used to select a sample of fisheries scientists
with diverse scientific expertise and educational background (e.g., natural
resource management, conservation, economics, fisheries biology, and social
sciences) involved in management, assessment, and conservation of striped
bass fisheries. Eight experts participated in semistructured interviews where
they examined the accuracy of four aggregated models: three models from
homogeneous groups (recreational fishers, commercial fishers, and man-
agers), and one diverse crowd model. Models were blinded (i.e., experts had
no information about which model represented which group). They were
first given pictures of group models (i.e., graphical maps of causal connec-
tions) to score the structure of causal relationships using a seven-point Likert
scale (1 = very inaccurate, 7 = very accurate) as a proxy measurement for
models’ performance (SI Appendix, Fig. S13). Second, experts were shown
bar charts visualizing the results of six scenarios that simulated each model’s
responses to social and environmental stressors (SI Appendix, Text S5 and
Fig. S10). They compared these scenario outcomes across models and judged
their accuracy using a similar seven-point Likert scale (SI Appendix, Fig. S14).

Network Analysis of Models. To identify the extent to which each aggregated
model represented complex causal processes, we used stochastic network
analysis of causal microstructures. Building on network theory and cognitive
map analyses of complex causal structures developed by Levy et al. (28), we
compared the aggregated FCMs according to their network motifs (i.e., mi-
crostructures that are constructed by two or three nodes and some unique
patterns of connections between them, which shape the underlying elements
of perceived causation in a cognitive map). These microstructures—also known
as graphlets—“encode important information about the structure of the

A B

C D

Fig. 4. The Impact of diversity on group performance in 10,000 replicates of the MCA. (A) Eigenvalues distance (Methods) between group models and the
EBFM. (B) Edges similarity (Methods) between group models and EBFM. (C) Three mockup examples of virtual groups with the same size but different levels of
diversity from low to high, which is measured by Shannon entropy formula (H), taking into account both the number of unique stakeholder types and the
evenness of their proportions in a group. (D) Correlation between group diversity and group performance. Group performance in D is a normalized score
measuring group model similarity to EBFM (Methods), and shaded area corresponds to 95% CI.
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network and provide a valuable tool for comparison” (44). The extent to which
one cognitive map can represent complex interdependencies among social and
ecological components of a natural resource system is thus linked to the dis-
tribution of complex micro motifs within its network. Studies have frequently
suggested that four particular motifs exemplify more complex patterns of cau-
sation (28, 29, 38, 45–48): bidirectionality, multiple effects, indirect effect, and
feedback loop (Fig. 3). Therefore, their prevalence in a cognitive map indicates a
higher perception of complex interdependencies. The prevalence of each motif
was measured using uniform random graph tests, which compared the count of
motifs in a network with the expected value of counts in randomly generated
networks of the same size and density with uniform distribution of edges (49).

MCA.We performedMCA by creating virtual agents (i.e., random individuals)
from each type of stakeholders, where their cognitive maps were randomly
generated. Specifically, each edge exists proportional to the number of
peoplewho included that edge, and the edgeweight is randomly drawn from
a normal distribution with a mean and SD representing the group. We then
assessed how often the diverse model outcompeted homogeneous ones. To
measure the group success, we calculated the similarity between the group
aggregated map and the EBFM model as the reference point via a bilateral

(graph-spectral graph) matrix similarity index (50). This measure of success
integrates the structural and compositional agreement of the models with
EBFM using measures of edges similarity and eigenvalues distance. Also, to
measure each group’s diversity, we used Shannon’s entropy formula because
it accounts for both the richness (i.e., how many unique stakeholder types
exist in a group) and evenness of each group (i.e., how even the proportions
of stakeholder types are). Our MCA includes 10,000 replicates (SI Appendix,
Texts S6 and S7). Finally, we used MCA to more comprehensively demon-
strate how median outcompetes mean in aggregating models across diverse
groups, while group size increases (SI Appendix, Text S7 and Fig. S18).

Data Availabilty. All necessary data supporting the findings of this study are
available as supporting information and on GitHub (https://github.com/
payamaminpour/Diversity_bonus_in_pooling_LK) (51).
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