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FIG. 4-a: Ultraviolet absorption photographs showing DNA bands resulting from density-
gradient centrifugation of lysates of bacteria sampled at various times after the addition of an ex-
cess of Ni4 substrates to a growing Ni"labeled culture. Each photograph was taken after 20 hours
of centrifugation at 44,770 rpm under the conditions described in the text. The density of the
CsCl solution increases to the right. Regions of equal density occupy the same horizontal position
on each photograph. The time of sampling is measured from the time of the addition of Ni4 in
units of the generation time. The generation times for Experiments 1 and 2 were estimated from
the measurements of bacterial growth presented in Fig. 3. 6 Microdensitometer tracings of the
DNA bands shown in the adjacent photographs. The microdensitometer pen displacement above
the base line is directly proportional to the concentration of DNA. The degree of labeling of a
species of DNA corresponds to the relative position of its band between the bands of fully labeled
and unlabeled DNA shown in the lowermost frame, which serves as a density reference. A test of
the conclusion that the DNA in the band of intermediate density is just half-labeled is provided by
the frame showing the mixture of generations 0 and 1.9. When allowance is made for the relative
amounts of DNA in the three peaks, the peak of intermediate density is found to be centered at
50 ±[ 2 per cent of the distance between the N" and NI,' peaks.
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BIOLOGY: MESELSON AND STAHL

For density-gradient centrifugation, 0.010 mnl. of the dodecyl sulfate lysate
was added to 0.70 ml. of CsCl solution buffered at pH 8.5 with 0.01 M tris(hydroxy-
methyl)aminomethane. The density of the resulting solution was 1.71 gm. cm.-3
This was centrifuged at 140,000X g. (44,770 rpm) in a Spinco model E ultracentri-
fuge at 250 for 20 hours, at which time the DNA had essentially attained sedimenta-
tion equilibrium. Bands of DNA were then found in the region of density 1.71
gm. cm.-3, well isolated from all other macromolecular components of the bacterial
lysate. Ultraviolet absorption photographs taken during the course of each cen-
trifugation were scanned with a recording microdensitometer (Fig. 4).
The buoyant density of a DNA molecule may be expected to vary directly with

the fraction of N15 label it contains. The density gradient is constant in the
region between fully labeled and unlabeled DNA bands. Therefore, the degree
of labeling of a partially labeled species of DNA may be determined directly from
the relative position of its band between the band of fully labeled DNA and the
band of unlabeled DNA. The error in this procedure for the determination of
the degree of labeling is estimated to be about 2 per cent.

Results.-Figure 4 shows the results of density-gradient centrifugation of lysates
of bacteria sampled at various times after the addition of an excess of N'4-containing
substrates to a growing N1"-labeled culture.

It may be seen in Figure 4 that, until one generation time has elapsed, half-
labeled molecules accumulate, while fully labeled DNA is depleted. One generation
time after the addition of N 14, these half-labeled or "hybrid" molecules alone are
observed. Subsequently, only half-labeled DNA and completely unlabeled DNA
are found. When two generation times have elapsed after the addition of N'4,
half-labeled and unlabeled DNA are present in equal amounts.

Discussion.-These results permit the following conclusions to be drawn regard-
ing DNA replication under the conditions of the present experiment.

1. The nitrogen of a DNA molecule is divided equally between two subunits which
remain intact through many generations.

The observation that parental nitrogen is found only in half-labeled molecules
at all times after the passage of one generation time demonstrates the existence in
each DNA molecule of two subunits containing equal amounts of nitrogen. The
finding that at the second generation half-labeled and unlabeled molecules are
found in equal amounts shows that the number of surviving parental subunits is
twice the number of parent molecules initially present. That is, the subunits are
conserved.

2. Followinq replication, each daughter molecule has received one parental subunit.
The finding that all DNA molecules are half-labeled one generation time after

the addition of N'4 shows that each daughter molecule receives one parental sub-
unit.'4 If the parental subunits had segregated in any other way among the daughter
molecules, there would have been found at the first generation some fully labeled
and some unlabeled DNA molecules, representing those daughters which received
two or no parental subunits, respectively.

3. The replicative act results in a molecular doubling.
This statement is a corollary of conclusions 1 and 2 above, according to which

each parent molecule passes on two subunits to progeny molecules and each progeny
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BIOLOGY: MESELSON AND STAHL

molecule receives just one parental subunit. It follows that each single molecular
reproductive act results in a doubling of the number of molecules entering into that
act.
The above conclusions are represented schematically in Figure 5.
The Watson-Crick Model.-A molecular structure for DNA has been proposed

by Watson and Crick.15 It has undergone preliminary refinement'6 without
alteration of its main features and is supported by physical and chemical studies."7
The structure consists of two polynucleotide chains wound helically about a common
axis. The nitrogen base (adenine, guanine, thymine, or cytosine) at each level
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FIG. 5.-Schematic representation of the conclusions drawn in the text from
the data presented in Fig. 4. The nitrogen of each DNA molecule is divided
equally between two subunits. Following duplication, each daughter molecule
receives one of these. The subunits are conserved through successive duplica-
tions.

on one chain is hydrogen-bonded to the base at the same level on the other chain.
Structural requirements allow the occurrence of only the hydrogen-bonded base
pairs adenine-thymine and guanine-cytosine, resulting in a detailed complemen-
tariness between the two chains. This suggested to Watson and Crick"8 a definite
and structurally plausible hypothesis for the duplication of the DNA molecule.
According to this idea, the two chains separate, exposing the hydrogen-bonding
sites of the bases. Then, in accord with the base-pairing restrictions, each chain
serves as a template for the synthesis of its complement. Accordingly, each daughter
molecule contains one of the parental chains paired with a newly synthesized chain
(Fig. 6).
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BIOLOGY: MESELSON AND STAHL

The results of the present experiment are in exact accord with the expectations
of the Watson-Crick model for DNA duplication. However, it must be emphasized
that it has not been shown that the molecular subunits found in the present ex-
periment are single polynucleotide chains or even that the DNA molecules studied
here correspond to single DNA molecules possessing the structure proposed by
Watson and Crick. However, some information has been obtained about the
molecules and their subunits; it is summarized below.
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FIG. 6.-Illustration of the mechanism of DNA duplication
proposed by Watson and Crick. Each daughter molecule con-
tains one of the parental chains (black) paired with one new
chain (white). Upon continued duplication, the two original
parent chains remain intact, so that there will always be found
two molecules each with one parental chain.

The DNA molecules derived from E. coli by detergent-induced lysis have a
buoyant density in CsCl of 1.71 gm. cm.-3, in the region of densities found for T2 and
T4 bacteriophage DNA, and for purified calf-thymus and salmon-sperm DNA. A
highly viscous and elastic solution of N14 DNA was prepared from a dodecyl sulfate
lysate of E. coli by the method of Simmons19 followed by deproteinization with
chloroform. Further purification was accomplished by two cycles of preparative
density-gradient centrifugation in CsCl solution. This purified bacterial DNA was
found to have the same buoyant density and apparent molecular weight, 7 X 106,
as the DNA of the whole bacterial lysates (Figs. 7, 8).
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BIOLOGY: MESELSON AND STAHL

Heat Denaturation.-It has been found that DNA from E. coli differs importantly
from purified salmon-sperm DNA in its behavior upon heat denaturation.

Exposure to elevated temperatures is known to bring about an abrupt collapse
of the relatively rigid and extended native DNA molecule and to make available
for acid-base titration a large fraction of the functional groups presumed to be
blocked by hydrogen-bond formation in the native structure. 19, 20, 21, 22 Rice and
Doty22 have reported that this collapse is not accompanied by a reduction in molecu-
lar weight as determined from light-scattering. These findings are corroborated by
density-gradient centrifugation of salmon-sperm DNA.23 When this material is

|-2mm l

DISTANCE FROM ROTOR CENTER a

FIG. 7.-Microdensitometer tracing of an
ultraviolet absorption photograph showing the
optical density in the region of a band of N14 E.
coli DNA at equilibrium. About 2 fg. of DNA
purified as described in the text was centrifuged
at 31,410 rpm at 250 in 7.75 molal CsCl atpH 8.4.
The density gradient is essentially constant
over the region of the band and is 0.057 gm./cm.4.
The position of the maximum indicates a buoy-
ant density of 1.71 gm. cm.-' In this tracing
the optical density above the base line is directly
proportional to the concentration of DNA in the
rotating centrifuge cell. The concentration of
DNA at the maximum is about 50 ,g./ml.
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FIG. 8.-The square of the width of the band
of Fig. 7 plotted against the logarithm of the
relative concentration of DNA. The divisions
along the abscissa set off intervals of 1 mm.2. In
the absence of density heterogeneity, the slope at
any point of such a plot is directly proportional
to the weight average molecular weight of the
DNA located at the corresponding position in the
band. Linearity of this plot indicates monodis-
persity of the banded DNA. The value of the
the slope corresponds to an apparent molecular
weight for the Cs-DNA salt of 9.4 X 10., cor-
responding to a molecular weight of 7.1 X 10. for
the sodium salt.

kept at 1000 for 30 minutes either under the conditions employed by Rice and Doty
or in the CsCl centrifuging medium, there results a density increase of 0.014 gm.
cm.r3 with no change in apparent molecular weight. The same results are ob-
tained if the salmon-sperm DNA is pre-treated at pH 6 with EDTA and sodium
dodecyl sulfate. Along with the density increase, heating brings about a sharp
reduction in the time required for band formation in the CsCl gradient. In the
absence of an increase in molecular weight, the decrease in banding time must be
ascribed10 to an increase in the diffusion coefficient, indicating an extensive col-
lapse of the native structure.

t
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BIOLOGY: MESELSON AND STAHL
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FIG. 9.-The dissociation of the subunits of E. coli DNA upon heat

denaturation. Each smooth curve connects points obtained by micro-
densitometry of an ultraviolet absorption photograph taken after 20
hours of centrifugation in CsCi solution at 44,770 rpm. The baseline
density has been removed by subtraction. A: A mixture of heated and
unheated N1" bacterial lysates. Heated lysate alone gives one band in
the position indicated. Unheated lysate was added to this experiment
for comparison. Heating has brought about a density increase of
0.016 gm. cm. -3 and a reduction of about half in the apparent molecular
weight of the DNA. B: Heated lysate of N16 bacteria grown for one
generation in N14 growth medium. Before heat denaturation, the hy-
brid DNA contained in this lysate forms only one band, as may be seen
in Fig. 4. C: A mixture of heated N14 and heated N" bacterial lysates.
The density difference is 0.015 gm. cm. -'

The decrease in banding time and a density increase close to that found upon
heating salmon-sperm DNA are observed (Fig. 9, A) when a bacterial lysate
containing uniformly labeled N"5 or N14 E. coli DNA is kept at 100° C. for 30
minutes in the CsCl centrifuging medium; but the apparent molecular weight of
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BIOLOGY: MESELSON AND STAHL

the heated bacterial DNA is reduced to approximately half that of the unheated
material.

Half-labeled DNA contained in a detergent lysate of N'5 E. coli cells grown for one
generation in N14 medium was heated at 1000 C. for 30 minutes in the CsCl centri-
fuging medium. This treatment results in the loss of the original half-labeled
material and in the appearance in equal amounts of two new density species, each
with approximately half the initial apparent molecular weight (Fig. 9, B). The
density difference between the two species is 0.015 gm. cm.-, close to the increment
produced by the N'6 labeling of the unheated DNA.

This behavior suggests that heating the hybrid molecule brings about the dis-
sociation of the NI5-containing subunit from the N'4 subunit. This possibility
was tested by a density-gradient examination of a mixture of heated N'5 DNA and
heated N14 DNA (Fig. 9, C). The close resemblance between the products of
heating hybrid DNA (Fig. 9 B) and the mixture of-products obtained from heating
N14 and N'5 DNA separately (Fig. 9, C) leads to the conclusion that the two
molecular subunits have indeed dissociated upon heating. Since the apparent
molecular weight of the subunits so obtained is found to be close to half that of the
intact molecule, it may be further concluded that the subunits of the DNA molecule
which are conserved at duplication are single, continuous structures. The scheme
for DNA duplication proposed by Delbrfick24 is thereby ruled out.
To recapitulate, both salmon-sperm and E. coli DNA heated under similar

conditions collapse and undergo a similar density increase, but the salmon DNA
retains its initial molecular weight, while the bacterial DNA dissociates into the two
subunits which are conserved during duplication. These findings allow two
different interpretations. On the one hand, if we assume that salmon DNA con-
tains subunits analogous to those found in E. coli DNA, then we must suppose that
the subunits of salmon DNA are bound together more tightly than those of the
bacterial DNA. On the other hand, if we assume that the molecules of salmon DNA
do not contain these subunits, then we must concede that the bacterial DNA
molecule is a more complex structure than is the molecule of salmon DNA. The
latter interpretation challenges the sufficiency of the Watson-Crick DNA model to
explain the observed distribution of parental nitrogen atoms among progeny
molecules.
Conclusion.-The structure for DNA proposed by Watson and Crick brought

forth a number of proposals as to how such a molecule might replicate. These
proposals6 make specific predictions concerning the distribution of parental atoms
among progeny molecules. The results presented here give a detailed answer to
the question of this distribution and simultaneously direct our attention to other
problems whose solution must be the next step in progress toward a complete
understanding of the molecular basis of DNA duplication. What are the molecular
structures of the subunits of E. coli DNA which are passed on intact to each daughter
molecule? What is the relationship of these subunits to each other in a DNA
molecule? What is the mechanism of the synthesis and dissociation of the sub-
units in vivo?
Summary.-By means of density-gradient centrifugation, we have observed the

distribution of N'5 among molecules of bacterial DNA following the transfer of a
uniformly N'5-substituted exponentially growing E. coli population to N'4 medium.
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BIOLOGY: MESELSON AND STAHL

We find that the nitrogen of a DNA molecule is divided equally between two physi-
cally continuous subunits; that, following duplication, each daughter molecule
receives one of these; and that the subunits are conserved through many duplica-
tions.
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