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1. Introduction.-A network of chemical reactions can be described by an
algebraic complex, in which the boundary operator assigns a chemical equation
to each reaction in the network. Roth (1955) in these PROCEEDINGS has given a
comparable description for an electrical network; he uses a 1-dimensional simplicial
complex, in which the boundary operator implements Kirchoff's laws. As ob-
served by B. Chance (1959), a chemical network is essentially different from an
electrical network, and this manifests itself in that we cannot in general use a
simplicial complex to describe a chemical network.
The following is a list of some of the algebraic complexes which are treated in our

detailed paper [Sellers (1966)]:
(i) The most fundamental example is the complex introduced by Eilenberg and

Mac Lane (1950) in these PROCEEDINGS as the generic complex K(F.*, 1); F. is a
free abelian group, whose free generators we shall call primes.

Application: We shall show that this complex represents a chemical network
in which each chemical compound is characterized by a finite set of primes (i.e.,
molecular structure = finite set).

(ii) The partition complex is the complex obtained from the generic complex by
identifying some of its primes.

Application: Chemically this is the most useful complex; each chemical com-
pound is characterized by its empirical formula (molecular structure = finite set
in which each element has a positive integral multiplicity).

(iii) The complex of cubical singular homology defined by Serre (1951) is shown
in our detailed paper to be a subcomplex of the "chemical complex" defined below.

Application: This complex represents a chemical network in which each chem-
ical compound is characterized by a sequence of empirical formulas, and each
reaction is an isomerization in which some terms in a sequence are merged to form
a single term or split up to form several terms (i.e., molecular structure = chain of
empirical formulas).

(iv) The truncated octohedral complex is a subcomplex of the complex in (iii) in
which the 1-cells are sequences of primes.

Application: This complex represents a chemical network in which the chemical
compounds are characterized by sequences of primes, and the reactions are isom-
erizations which permute the primes (i.e., molecular structure = sequence).

(v) In § 3 we shall define the chemical complex, having all the above com-
plexes as special cases or subcomplexes.

Application: This complex, as suggested by the name we have given it here,
has been constructed to represent arbitrary chemical networks. It is intended to
fulfill the need, stated by Aris (1965), for an algebraic treatment of chemical net-
works involving "structural chemical formulas." Such a network is one in which
empirical formulas do not suffice to characterize its chemical compounds.
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694 MATHEMATICS: P. H. SELLERS PROC. N. A. S.

In this paper we shall consider only (i), the most fundamenital example, and (v),
the most general example, because of their theoretical importance.

2. The Generic Complex.-The generic complex K(Fa*, 1) was defined by
Eilenberg and Mac Lane (1950) in these PROCEEDINGS.

Fa is a free abelian group, whose operation is called product and whose free
generators are called primes; square-free products of primes are called generic
elements; and an ordered 7r-tuple of generic elements whose product is generic is
called a 7r-cell. A ir-chain is an element of the free abelian group generated by all
the ir-cells. The boundary a is the homomorphism from the group of ir-chains to
the group of (7r-1)-chains such that for any 7r-cell [91, g2, ..., gj we have

a[l, g2, ... , 9X]
=[92, .-., It + E(-1) [... , g98+1, .. + (-1) 9, .,9-]

6=1

To determine the chemical network described by this complex, all we have to do is to
interpret the 1-cells [g], [h], [gh], etc., as chemical compounds, the 2-cells [g, h], etc.
as chemical reactions, and the boundary of [9, h] as the unique chemical change
which it produces; that is,

b[gq h] = [h]- [gh] + [g] 0;

this denotes a chemical change in which one molecule of [g] and one of [hI are
used up, and one of [gh] is produced. (The coefficients could be regarded as real
numbers of moles per liter per second instead of whole numbers of molecules;
then the groups of 7r-chains would have to be extended to real vector spaces. We
shall not make that digression here.)
The symbol =± denotes homological equivalence. If we transpose the above

equivalence so as to have positive coefficients, we obtain the traditional chemical
equation:

[g] + [h] = [gh].
We remark that this equation is balanced in the chemical sense. It suggests the
possibility of a chemical change rather than the occurrence of the change itself,
which we have denoted above by the 1- chain

[h]- [gh] + [gi.
A 2-chain, a linear combination of reactions, is called a reaction process. If its

boundary is zero, then it is said to be in "equilibrium"; therefore a 2-cycle is called
an equilibrium state. If the boundary of a reaction process is a linear combination
of chemical compounds which have been designated in advance as "substrates" and
"products," then the process is said to be in a "stationary state"; therefore, what
is called homologically a relative 2-cycle is a stationary state chemically.
In the cochain complex corresponding to K(Fa*, 1) the 1-cells and 2-cells are

functions called chemical fluxes and reaction fluxes, respectively, with values in the
domain of coefficients-integers here.

Question: Does every integral chain complex represent a chemical network in
the manner described? The answer is no, if we wish to obey the law of conserva-
tion of mass by having only "balanced chemical equations."
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Definition: Let x be a 1-chain in K(Fa*, 1); x is balanced, if and only if for
any prime g of Fa

t#(c) = 0,

where t, is a cochain such that for any 1-cell [m]

~g([m]) j, if g divides m.(0 otherwise.

This definition can be extended to any dimension of cell by a termwise definition of
divisibility, as is done in our detailed paper. We could describe the mathematical
content of our subject as a study of integral chain complexes in which boundaries
are balanced with respect to a finite set of primes.
THEOREM 1. Let x be a 1-chain in a subcomplex of K(Fa*, 1); if x = O. then x is

balanced.
Therefore we may say that if a chemical complex is represented by a subcomplex

of a generic complex, then all its chemical equations are balanced. This is equiva-
lent to saying that t, is a cocycle, because for any 2-cell [m, n] the definition of a
coboundary gives this:

(at))([m, n]) = t,(b[m, n]) = t([n] - [mn] + [ml) = 0.

In the case of the generic complex itself, rather than a proper subcomplex, the con-
verse of Theorem 1 holds, and we may say that every cocycle is generated by co-
cycles of the form t,.
A 1-cocycle is a linear combination of fluxes which is zero when applied to the

chemical change caused by any reaction [m, n]. Such linear functions are called
conservation conditions. A 1-cocycle generated by 4,, A, ... may be called a mass
conservation condition, and any others [there are none in K(Fa*, 1) ] may be called
stoichiometric conservation conditions.
Having defined various chemical terms mathematically, we can easily deduce

theorems about them. The following one is valid for any chemical network re-
gardless of the complex which represents it. More refined versions of the theorem
may be obtained when the complex is known.
THEOREM 2. Let C2 _,. C1 denote a chemical network, in which C( and C2 are the

free abelian groups generated by the finite sets of all chemicals and reactions, respectively,
and a the homomorphism which maps any chemical reaction to the chemical change it
produces; let

71 = the number of chemicals,
72 = the number of reactions,

= the maximum number of linearly independent conservation conditions,
2 = the maximum number of linearly independent equilibrium states;

then

71- 72 = -7i 772-

This theorem may be regarded as an application of the Euler-Poincar6 theorem to
the complex C2 a0 C, -l 0.

Problem: Consider a chemical network which is characterized by a generic
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696 MATHEMATICS: P. H. SELLERS PROC. N. A. S.

complex in which F. has u free generators. Find the maximum number X72 of
linearly independent equilibrium states.
By a simple combinatorial calculation we get:

-y = 2- 1,
72 = 3P - 2-2" + 1.

According to our observation that in the present case all conservation conditions
are generated by the mass conservation conditions, we conclude:

71 =IA

By Theorem 2,

X72 = 72 - 7 + = 3' - 3*2/ + 2 + 1A.
This gives us the number of basic equilibrium states, and we can get an explicit

expression for each of them by working out the 2-cycles in the complex

C3 a C2 a -O
where CR is generated by all 3-cells of the form [1, m, n]. We find that there are

(2) nonbounding 2-cycles of the form [g, h] - [h, g], where g and h are prime,

and that the remaining independent 2-cycles are of the form a [1, m, n] = [m, n]
[1in, n] + [1, mu] - [1, m]. The first type consists of a chemical reaction accom-
panied by its reverse reaction, and the second type consists of four reactions-
obviously in equilibrium-whose chemical equations are as follows:

[m] + [n] = [mn],
[I + [mn] [1mn]
[lmn] = [im] + [n],
[MI ][1I+ [m]-

An application of the generic complex to a problem in biochemistry (hexokinase)
is given in the detailed paper.

3. The Chemical Complex.-Now we define a complex which was constructed to
represent chemical networks generally and contains the other complexes listed in
section 1 as subcomplexes and special cases.

Let (Al, A2, ..., AJ} be a set of finite cardinality ,. Its elements are called
primes.

Let ® e be called a tensor product symbol for 0 = 1, 2, ..., co, and let oe be called
the derived product symbol of ®e, or just a product symbol.

Definition: A chemical (or a chemical 1-cell) J is a finite sequence of primes
with a product symbol between each consecutive pair; hence we write

J = ElolE2o2... O.e0Ee,
where El, Eq., Ee are primes.

Definition: The 06-product Jo9K of any pair of chemicals is a chemical of the
following form:

Jo9K = E1ol ..oE0oEoo+o0& ±.0..o++_iE+o
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where J = El01 ... o,-1 Ee and K = E6+ , 0o+ ... Or+i-i Eo+^,.
Let 6R be a fixed sequence (p1, p2, ..., p,,) of natural numbers, in which p, is

called the maximum power of the prime A_ for 1 < v < ju. 61 is a constant of the
complex defined here.

Definition: The chemical network of 61, w is denoted by

C2"'R 2.

(i) Ci&@ is the free abelian group generated by all chemicals such that any one
contains at most p, appearances of A, in its sequence of primes and contains any
of the product symbols o°, 02, ...,)",; (it) C2&' is the free abelian group generated
by all elements of the form J®OK (1 < 0 < w) such that J, K, and Jo0K are in
Cii.; (iii) ? is the homomorphism determined by

6(J®oK) = K - JoOK + J.

Since the groups in this definition are finitely generated, it is always possible to
compute the equilibrium states, conservation conditions, stationary states, etc.,
for explicit small values of pi, p2, ..., pi, and c. However, to work out these
things in general we need to embed the network in a longer algebraic complex,
which is constructed as follows:

Definition: The chemical complex of 61, w is the sequence C&@ - CO -I" --

... 2C.aN C- 0 such that (i) Ce@"is defined as above; (ii) for 1 < 'r < Pi +

... + pa = p Ct"' is the free abelian group generated by all r-termed sequences
of the form J1@1J202... ® r-'J, called a chemical 7r-cell, such that J1, J2, *J,
and J1o1J2o2... o0lJ, are in Ct "", and @l, @2, . . ., O,- are any tensor product
symbols; (iii) a is the homomorphism determined by

(JW1 I... Tr-Jr) = (J22...**-iJwr)
T 1

+ E (-l)°(Jio ... .®0 1o49J9+1®0+1. . .-1J.) + (-1)T(J®l.. ..,2J,.
0=1

THEOREM 3. If xeC& , then bax = 0.
This theorem justifies the above definition.
4. Application of the Chemical Complex.-In the detailed treatment [Sellers

(1966)] of our subject, the chemical complex is referred to as a "sequential com-
plex," but the present name is appropriate, because the complex was constructed
specifically to provide an algebraic description of a chemical network having the
following features:

(i) Structural formulas: It is assumed that each chemical in the network has a
unique empirical formula-mathematically, a unique prime factorization. How-
ever, a chemical is not uniquely determined in general by its empirical formula,
because there may be different ways of combining a given sequence of primes
chemically-mathematically, two products with the same factorization may use
different product symbols. If a chemical cannot be uniquely defined by an em-
pirical formula, then we use products other than the free abelian group product
and call the representation a structural formula.

(ii) Balanced equations: Let x = y be a chemical equation written in the tradi-
tional manner of chemistry with positive coefficients on each side; x and y are
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698 PHYSICS: HERAK AND GORDY PROC. N. A. S.

in R The equations is l -alanced in the chemical
sense

if (regard + as a product
symbol) both sides have the same prime factorization. It is easily seen that this
is equivalent to saying that x - y satisfies the definition of balance given in § 2.
THEOREM 4. Let x and y be 1-chains in a subcomplex oJ a chemical complex;

if x and y are homologically equivalent, then x = y is balanced. The converse holds
in the nonproper subcomplex.
When the chemical complex is applied to a problem, the product symbols will

have particular properties, determining a special complex. In the detailed paper
we consider the theory of a few special complexes which appear to be important
chemically.
The only law of chemistry which goes into the construction of our complexes is

conservation of mass. Therefore they are by no means applicable only to chem-
istry. It is easy to conceive of a wide class of combinatorial problems which could
be put into the language of algebraic complexes, as has been done here for chem-
istry.
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ESR STUDY OF -y-IRRADIATED POLYNUCLEOTIDES*

BY JANKO N. HERAKt AND WALTER GORDY

DEPARTMENT OF PHYSICS, DUKE UNIVERSITY

Communicated February 11, 1966

Electron spin resonance investigations of radiation-induced free radicals in DNA
and RNA, their constituent bases, and their component nucleosides and nucleotides
have previously been made.'-'3 This study is concerned with homopolymers and
copolymers of certain of the nucleotides. Some results on three dry polynucleotides
at room temperature have previously been reported by Muller. 9
Perhaps the most important knowledge gained from these previous ESR studies

of the nucleic acids and their constituents is that H atoms released from bound
water, perhaps also from the sugar group, can add to certain of the base rings
(apparently to all except cytosine) to produce H-addition radicals. (See Note
added in proof.) This H-addition was proved for thymidine by analysis of the
single crystal;"3 for DNA, by deuterium substitutions and by irradiation of
DNA under H2 pressure." For guanine, adenine, and uracil, as well as for
thymine, it was strikingly proved by subjection of the powdered samples to H
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