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M. Sato's hyperfunctions are a generalization of distributions. Some applica-
tions are made to linear partial differential equations with constant coefficients.
Global existence in the space of hyperfunctions holds for all open sets. Also,
Weyl's lemma is extended to include hyperfunctions.

1. Hyperfunc(ions of M. Sato. -Let (Q be an open set Rn, and V an open set in
Cn containing Q is a relatively closed subset. B(Q), the family of hyperfunctions
on Q, is by definition H;(V, a), the nth relative cohomology group of V mod V -
with coefficients in the sheaf a of germs of analytic functions. In the notation of
Godement,2 B(12) = H(V, a), where ( = {S:S c Q and S is closed in V}. It
follows easily from the definition that B(Q) is independent of the choice of V.
By a basic result of Grauert, for each open set Q in Rn, we can find a fundamental

neighborhood system in Cn consisting of domains of holomorphy. Therefore, we
can pick a domain of holomorphy V so that V n Rn = U. In this case, B(Q) may
be identified with the Cech cohomology group A (V # 12)/2A (lhi), whereA (V # Q) and
A ( V;) are the spaces of analytic functions on V #1Q = (C - R)n n (V - 2) and on
V3 = ((C - R)-1 X C X (C - R)n-i) n (V - ), respectively. If u E B(Q) is
the equivalence class [F] where F C A(V # 12), we will call F a defining function
for u.
The following basic results concerning hyperfunctions, (a) through (e), are due to

Sato.' However, his complete proofs are not available. The brief development
found here is based on Martineau's exposition.4

IfK is a compact subset of Cn, we denote by A (K) the space of functions, analytic
in some complex neighborhood of K, with the inductive-limit topology. Let A'(K)
denote the dual of A (K). Elements of A'(K) are called analytic functionals. If
K c Rat Martineau has shown, using Serre duality, that H (Cn, a) = 0, for p =
0,... , n - 1, n + 1, and that HI(Cn, a) is isomorphic to A'(K). These facts are
enough to derive (a) through (c) below.

Let 63 denote the sheaf over R" determined by the presheaf IB() :12 an open set in
R }.

(a) The presheaf B(Q) is a sheaf, that is, B((Q) = 17(Q1, 3).
Proof: As suggested by Sato,I once it is proved that HaP(V, (t) = 0, p = 0,...,

n - 1 for small Q, then (a) follows by the method of spectral sequences. Consider
the exact sequence of relative cohomology groups associated with the triple Cn D
Cn - ?)1 D Cn - n:

-HO(Cn, i,) ->j H-"(Cn _2 amta) ---HP+'(Cn, a)I. -

Assume 1 is bounded. Then, since D and a0 are compact, it follows that HA
(Cn - 12, (a) = 0 for p = 0,..., n - 2. The natural map of Hna(Cn, (i) into
H,(Cn, a) is injective since the map of A (Q) into A (6Q) has dense range. There-
fore Hn-,(Cn - A2, (a) = 0.
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Because of (a), we have a concept of support for hyperfunctions. Let K be a
relatively closed subset of the open set Q c Rn. Let V be an open set in Cn con-
taining Q as a relatively closed subset. Denote by BW(Q) the space of sections, of the
sheaf G§ on Q, with support in K. Then

(b) B.(Q) = Hn(V, a). In particular, ifK is a compact subset of RX, BK(Rn)
At(K).

Proof: BK(Q) is by definition the kernel of the restriction map of B(Q) into
B(Q- K). On the other hand, the triple V D V - K D V -Q gives the exact se-
quence:

0 = HQ_1(V - K, () -4- Ha)(V, a) -O HQ(V-K,a OH (V a).

(c) B is flabby.
Proof: Since H1'(C0 , a) = 0, the exact sequence

H,(Cn, a) - Ha(Cn - _, a) -- Hn(C¶a()

shows that the restriction map Ba(Rn) -- B(Q) is onto.
Since (I is flabby and BK(Rn) _ A'(K), every hyperfunction can be expressed

as a locally finite sum of analytic functionals. An easy consequence of this is that
every distribution is a hyperfunction.

Let A (Q) denote the real analytic functions on U. If u E A (Q), then u C A(V)
for some complex Stein neighborhood V of U. Let x+ denote the characteristic
function of {z:z C V, Im z1> 0, j = 1,. . ., n.

(d) If u is a real analytic function on Q, then x+ u C A (V # Q) is a defining func-
tion for u on U.

Proof: Since being a defining function is a local property, it is enough to pick
so C CO (a), such that so is identically one on w cc Q, and show that x+u is a de-
fining function for .pu on w. Given v C A'(K), where K is a compact subset of R ,
v(z) = (27ri) -nv(IIH(tj - zj) -1) is analytic on (C - R)n and is a defining function for v
on Rn. In our case, '-o is a defining function for u on w. Let a = (o',f. X Un)
where eachua = 1 and letW = {z (zE V, aj Im zj> 0, j = 1,. .,

ouI vyo(z) = (27ri)-n l((t) - )d) z C V'i

can be analytically continued across w by shifting the path of integration, since
(ou C A(w). Let F' denote this prolonged function. Then by Cauchy's integral
formula one can easily check that

u(z) = 2(sgn a)Fa(z) (1)

for all z in some complex neighborhood W of w. Let xr denote the characteristic
function of Va. From (1) one can show that x+u - xoFr C 2A(W1). But
Vu = XxffFa, completing the proof.
The next proposition follows immediately from (d) and its proof.
(e) IfF C A(V # Q) is a defining function for u C B(s) such that each FI va can

be continued across Q to a function F¢, then u is the real analytic function 2(sgn a)F¢.
2. Linear Partial Differential Equations with Constant Coefficients.-If u =

[F] E B(Q), then by definition (b/lxj)u = [(b/bzj)F]. The hyperfunctions on Q
obviously form a module over A (Q). Hence, we can consider linear partial differ-
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ential operators P(xD) with coefficients in A (U) acting on B(U) in the obvious way.
Since (3 is flabby, we have
LEMMA 1. If U C 2' are two open sets in Rn and P(xD)B(U') = B(U'), then

P(xD) B(Q) = B(U)
The following lemma is often used to prove existence or approximation.6 Let E

and E1 be reflexive Frechet spaces, and 7r a continuous linear map of E into E1 with
dense range. Then E' can be considered a subspace of E'. Let T and S be con-
tinuous linear maps of E into E, and E1 into E1, respectively, such that TrT = STr.
LEMMA 2. Suppose T is onto. Then S is onto and 7r[ker T] is dense in ker S if

and only if it follows from u F E' and T*u E El that u E E'.
Consider the case where E = A(Cn), F = A(W), and T = P(D) = S. Mal-

grange6 has a short proof that P(D) A (C") = A (Cn) and that the exponential poly-
nomial solutions of P(D)u = 0 are dense in N = {u:u C A(Cn) and P(D)u = 01.
Hence we have, as a special case, that: P(D)A(W) = A (W) and the exponential
polynomial solutions of P(D)u = 0 are dense inN = { u: u F A (W) and P(D)u = O}
if and only if v F A'(Cn) and P*(D) v C A'(W) imply v F A'(W).
LEMMA 3. For all open convex sets W in Cn, P(D)A(W) = A(W), and the ex-

ponential polynomial solutions ofP(D)u = 0 are dense in {u:?u F A(W) and P(D)u
=0}.
Proof: If F is entire, let M(z, F, r) = sup |F(W)|. Suppose v E A,'(Cn)

kz - ri < r
and P(D) v F A'(W). From H6rmander,7 we know v . [M(Z, PV, 4r)
M(z, P, 4r)]/M(z, P, r)2, Z E Cn, and, since P is a polynomial, that there exists a
constant s > 0 independent of z such that M(z, P, r) > -q, z F Cn. Combining these
two facts we can conclude that v F A'(W) by the Polya-Ehrenpreis-Martineau
theorem.5
From now on, P(D) will denote both the operator laa(j-ib/x)a on B(Q) and

the operator 2a(-i/z) on A (W).
THEOREM 1. For each open set Q in Rn, P(D) B(Q) = B(Q).
Proof: By Lemma 1 we need only show that P(D) B(Rn) = B(RW). However,

since each of the 2" connected components of Cn # Rn is convex, P(D) A (Cn # Rn) =
A (Cn # Rn) by Lemma 3. Apply this to the defining functions.

Of course, one gets entirely different results if D'(Q) or C (Q) are substituted for
B(Q) in Theorem 1 (see, for example, Hormander7).
THEOREM 2. The following are equivalent:8
(a) P(D) is elliptic.
(b) If u F B(Q) and P(D)u F A(Q), then u F A(Q).
(c) If u E B(Q) and P(D)u E C(Q), then u E C(Q).
Proof that (a) implies (b): Since real analyticity is a local property, it is enough

to prove (b) in the case Q = {x: Ix.1 < r, j = 1,..., n}. Also, by the Cauchy-
Kovalevsky theorem we can locally solve P(D)v f with v analytic so we may as-
sumef = 0. Let V = {z: IzI < r, j = 1,. . ., n}. LetG E A(V#Q) be a defining
function for u on U. Then P(D)u = 0 means P(D)G = 2Hj, where H; F A(l?'j).
By Lemma 3 there exist Gj F A ( 1%) such that P(D) G; = Hj. Then F = G - ;
is a defining function for u and P(D)F = 0. By (e) of § 1, this reduces the proof to
the following lemma which is concerned with natural domains of existence for cer-
tain overdetermined systems.
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LEMMA 3. Suppose P(D) is elliptic. Then for each neighborhood V of 0 in Cn,
there exists a neighborhood U of 0 in Cn such that, for every component EV of V #
(v n Rn), ifF E A (VC) and P(D)F = 0, then F can be analytically continued to all of
U.9
Sketch of proof: Let N(W) = {F:F E A(W) and P(D)F = 01. Let V. =

{z: IIm zjI + Re zjI < p1. We will show that for each p > O there exists a 5> 0
such that the restriction map r:N (convex hull of V' U U6) N(V') is onto, where,
in our calculations below, we will take Us to be the product of the n triangles T-
with vertices (0, -5), (5, 5), (-5, 5). Let HK(z) = sup Re z4. By the Polya-

reK
Ehrenpreis-Martineau theorem, for all convex compact sets K in Cn, u E A'(K)
if and only if for each E> 0 there exists a constant C. such that | 4(z) < CE exp
[HK(Z) + EIZI ] Z E Cn. An examination of the analytic uniform structure'0
+(W) = { a(z): a(z) is a continuous positive function on Cn, exp [HK(z) ] = o(a(z))
for all compact convex subsets K of W} on the open convex set W, and the compari-
son theorem of Ehrenpreis'0 show that (i) below is sufficient to prove the lemma.
We will just examine the case a = (1,. . ., 1) and let V, = V'. Let KE denote the
product of the n triangles Ki with vertices (p - 2e, e), (0, p - e), (-(p - 2f), e).
Let Kfa denote the convex hull of K. U Us.

(i) For all p > 0 there exist a 5> 0 and a constant c > 0 such that for e sufficiently
small, P(z) = 0 implies HK.,a(z) < HK,,(z) + C. The maximum of Re z4 over K
must occur at an extreme point since Re zr is linear in z, and K is convex and com-
pact. Therefore, HKE,8(z) = max {HKE(z), H08(z)}. Hence, we may replace
HKe', by Hfy8 in (i). Now, one can calculate Htj8 and HK. explicitly. Since P(D)
is elliptic, there exist constants M1 and M2 such that P(z) = 0 implies 21 Im zjI <
Ml [1 + 2 Re zjJ ] and 2 Re zjI < M2[1 + 2 Im zjjI ]. Using these estimates,
the proof of (i) is easy since HG8 and HKe are linear functions of 2 1 Re zj| and
21ImzjI.

Since we can locally solve P(D)u = f for u C C' if f E C', (b) trivially implies
(c). The fact that (c) implies (a) is a consequence of the following lemma. How-
ever, we can give an easy indirect proof that (c) implies (a). Since Theorem 1
holds with B(Q) replaced by C@(Q) only if P(D) is elliptic,7 we know that we can
find ,fE CC(), andu C B(Q) butu C(Q) suchthatP(D)u = f. Our theorem
says that the concepts of hypoellipticity and ellipticity are equivalent with respect
to hyperfunctions.
LEMMA 4. If P(D) is not elliptic, then there exists a hyperfunction u C B(Rn)

such that P(D)u = 0 but u Z C' (Rn).
Proof: Since P(D) is not elliptic, there exists a real vector N # 0 such that

Pm(N) = 0. By a linear change of coordinates we may assume N = (1, O,..., 0).
Pick a real vectorM perpendicular to N so that Pm(M) $ 0. Now consider P(sN +
tM) = 0 as an equation in t with s fixed large. We can solve for t as a function of 8

and expand in the Puiseux series" t(s) = sE cj(s-1"P)', for some integer p and s

> C. Thus t(s)I < C' sjl -('/P) if sI > (2C)'. Consider F(z,, z') = -
27ro

exp [i(sz, + t(s)(M,z'))] ds, Im z, > 0, z' CCn-1. Thus P(D)F = 0 whenever
this integral is convergent. If Im z, > 0 and s is sufficiently large, then
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Im (sz1 + t(s) (M,z')) > s Im z1- t(s) (Mz')
> s Im zi - C'sl-lP | (Mz') | eas

for some a> 0. Therefore the integral converges and F(z,z') is an analytic function
of z, for Im zi > 0. Also F(zi,0) = - 1/(27rizi). Let X denote the characteristic
function of {z:Im zj > 01. Let u = [xF]. Then u E B(Rn) and P(D)u = 0.
Also, u is real analytic in x2,... .,xn, but u(xi, 0,..., 0) Z LVOc (R).
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Let J be a Jordan arc or a Jordan curve, and suppose that J is oriented and
rectifiable. Assume that the function f(A) is defined and summable on J. Then
the Cauchy-type integral

I f(¢)dr (z J) (1)

represents a holomorphic function in each region complementary to J. If ¢o C J
but to is not an end point of J, then the singular Cauchy integral

rJ~)4(r- C J) (2)
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