Secreted β-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances τ phosphorylation

STEVEN M. GREENBERG*, EDWARD H. KOO, DENNIS J. SELKOE, WEI QIAO QIU, AND KENNETH S. KOSIK*

Department of Neurology and Program in Neuroscience, Harvard Medical School and Center for Neurologic Diseases, Department of Medicine (Neurology), Brigham and Women’s Hospital, Boston, MA 02115

Communicated by Edward Harlow, April 11, 1994

ABSTRACT

Biological effects related to cell growth, as well as a role in the pathogenesis of Alzheimer disease, have been ascribed to the β-amyloid precursor protein (β-APP). Little is known, however, about the intracellular cascades that mediate these effects. We report that the secreted form of β-APP potently stimulates mitogen-activated protein kinases (MAPKs). Brief exposure of PC-12 pheochromocytoma cells to β-APP secreted by transfected Chinese hamster ovary cells stimulated the 43-kDa form of MAPK by >10-fold. Induction of a dominant inhibitory form of ras in a PC12-derived cell line prevented the stimulation of MAPK by secreted β-APP, demonstrating the dependence of the effect upon p21WW. Because the microtubule-associated protein τ is hyperphosphorylated in Alzheimer disease, we sought and found a 2-fold enhancement in τ phosphorylation associated with the β-APP-induced MAPK stimulation. In the ras dominant inhibitory cell line, β-APP failed to enhance phosphorylation of τ. The data presented here provide a link between secreted β-APP and the phosphorylation state of τ.

The cell surface glycoprotein β-amyloid precursor protein (β-APP) consists of a large extracellular domain, a single membrane-spanning region, and a short intracellular carboxy tail terminus. The amyloid β (Aβ) peptide that forms amyloid fibrils in Alzheimer disease (AD) is proteolytically released as a 40- to 43-amino acid fragment from the parent molecule (1). Cleavage at another site results in secretion of the extracellular domain (secreted β-APP), which appears in the medium of cultured cells and in cerebrospinal fluid (2-4). Amounts of β-APP increase during neuronal differentiation (5-7) and in response to injury (8-10), suggesting possible physiologic roles for this molecule. Biological activities have been attributed to Aβ (11-13) and to secreted β-APP (14-18). Secreted β-APP at low (<1 nM) dosages has been reported in culture to increase cell survival and adhesion, increase neurite extension from neurons and PC-12 cells, and prevent intracellular calcium accumulation and cell death in neurons. How these functions are mediated is unclear.

Mutations in the β-APP gene (1) can give rise to the full spectrum of AD pathology, including deposition of hyperphosphorylated τ isoforms as paired helical filaments (PHFs; refs. 19 and 20). The sequence of steps connecting β-APP and its metabolism to the hyperphosphorylation of τ and the formation of PHFs is central to understanding the pathogenesis of AD. This connection is crucial because PHF-containing neuritic lesions correlate most closely with the presence of clinical dementia (21). Phosphorylation serves normally to regulate the binding of τ to microtubules. In AD, hyperphosphorylation of τ results in a decreased affinity of τ for microtubules and presumably a loss of neuronal microtubule stability (22, 23).

We sought to determine whether the mitogen-activated protein kinases (MAPKs) might be involved both in transducing the effects of β-APP and in regulating the phosphorylation state of τ. MAPKs (also known as extracellular signal-regulated kinases or ERKs) are a family of protein kinases 40-46 kDa that specifically phosphorylate serine and threonine residues (24). MAPKs are activated by a variety of trophic factors, often through stimulation of p21WW (25-27). Once active, MAPKs phosphorylate and regulate an array of cellular substrates involved in gene transcription, cell structure, and signal transduction. MAPK can be found associated with microtubules during purification (28, 29).

The enzymes responsible for regulating the phosphorylation state of τ in vivo are unknown. MAPKs are strong potential candidates, because they phosphorylate in vitro (30-33) several of the same Ser/Thr-Pro sequences that are phosphorylated in PHF τ in vivo (34-37). MAPKs have also been immunocytochemically localized to areas of the AD brain that develop immunoreactive dystrophic neurites (38) and in proximity to neurofibrillary tangles and senile plaques (39).

Here we report that secreted β-APP activates MAPKs at picomolar to low nanomolar concentrations. Associated with this activation is enhanced phosphorylation of the τ protein.

METHODS

Cell Culture. PC-12, GSras1, and GSrasDN6 (the latter two lines provided by S. Hagegoua, State University of New York at Stony Brook) pheochromocytoma cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated horse serum (GIBCO/BRL) and 5% fetal calf serum (Sigma) at 37°C in humidified air with 5% CO2. Cells were plated at a density of 1 × 104 cells per 60-mm plate 2 days prior to each experiment. Expression of transfected ras genes in GSras1 and GSrasDN6 cells was induced 16 hr before use by addition of 1 μM dexamethasone from a 5 mM stock in dimethyl sulfoxide (DMSO). Equal amounts of DMSO (final concentration, 0.02%) had no effect on control GSras1 and GSrasDN6 cells.

Chinese hamster ovary (CHO) cells were grown in DMEM supplemented with 10% FCS and 12 μg of t-pyroline per ml. CHO cells transfected with β-APP (40) were generously provided by S. Sisodia (The Johns Hopkins University). Fresh medium (15 ml/100-mm plate) was added to CHO cells plated at 1:5 dilution and used as conditioned medium 24 hr later. This procedure resulted in concentrations of β-APP in the range of 1–10 nM as determined by comparison on immunoblot with purified β-APP. This is at least 5–10 times greater than the amounts produced by untransfected CHO or PC-12 cells.

Abbreviations: β-APP, β-amyloid precursor protein; MAPK, mitogen-activated protein kinase; AD, Alzheimer disease; PHF, paired helical filament; CHO, Chinese hamster ovary; NGF, nerve growth factor; Aβ, amyloid β; ERK, extracellular signal-regulated kinase.

*To whom reprint requests should be addressed.
Immunocomplex Assay of MAPK. PC-12 cells were treated with either control medium (10% fetal calf serum in DMEM), conditioned medium (see above), conditioned medium immunocytochemically prepared by immunoprecipitation with anti-APP, B5 (Athena Neurosciences, San Francisco; 2.4 μg of antibody per ml of medium), or control medium supplemented by purified β-APP, nerve growth factor (NGF) (2.5 S, GIBCO/BRL), or HPLC-purified synthetic Aβ40-40 (41). Following treatment, cells were washed twice with ice-cold phosphate-buffered saline with 1 mM sodium orthovanadate and then scraped into 100 μl of immunoprecipitation buffer (50 mM NaCl, 1 mM EGTA, 1% Triton X-100, 0.2% Nonidet P-40, 0.1% deoxycholate, and protease and phosphatase inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, 10 μg of aprotinin per ml, 10 μg of pepstatin A per ml, 10 μg of leupeptin per ml, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 20 mM sodium fluoride). Lysates were centrifuged to remove cellular debris, normalized to 50–100 μg of protein (42), and precipitated for 1 hr at 4°C in 1% SDS/10% glycerol/10 mM Tris-HCl, pH 7.4, with 0.2% Nonidet P-40, 0.1% deoxycholate, and protease and phosphatase inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, 10 μg of aprotinin per ml, 10 μg of pepstatin A per ml, 10 μg of leupeptin per ml, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 20 mM sodium fluoride). Precipitates were collected with 50 μl of 10% protein A-Sepharose, washed as described (27), and assayed for kinase activity for 30 min at 30°C. Kinase reaction mixtures contained 15 μg of myelin basic protein, 50 μM γ-[32P]ATP (1 μCi; 1 Ci = 37 GBq), 10 mM MgCl₂, 5 mM benzamidine, 1 mM dithiothreitol, and 30 mM Hepes (pH 7.2) in a final volume of 30 μl. Reactions were terminated by boiling in SDS sample buffer, resolved on 15% polyacrylamide gels, and quantified by Phosphorimage analysis (Molecular Dynamics).

ImmunobLOTS. Following treatment, cells were lysed in a boiling solution of 1 mM EDTA/5 mM EGTA/2% SDS/30 mM Tris-HCl, pH 6.8, and the above protease and phosphatase inhibitors, boiled for 10 min, and sheared by passage through a 26-gauge syringe. Lysate supernatants were normalized for protein, resolved on 10% polyacrylamide gels, and transferred by the semi-dry blotting system (Bio-Rad). After blocking for 16 hr at 4°C in phosphate-buffered saline and 3% bovine serum albumin, blots were probed for 4 hr at room temperature in the same solution with monoclonal antibodies to phosphotyrosine (4G10, UBI, 1:500) or MAPK (Zymed; 1:2500). Immunoreactive bands were visualized with anti-mouse antibody coupled to hors eradish peroxidase (Promega) and the ECL system (Amer sham).

Purification of Secreted β-APP. β-APP was purified by either conventional chromatography from serum-free medium (MCD-302; Sigma) conditioned by CHO (β-APP711) cells. One method utilized affinity purification with monoclonal antibodies 5A3 and IG7 (43) covalently attached to AminoLink gel resin (Pierce) according to the manufacturer's instructions. β-APP bound to the column was eluted under high salt conditions (Gentle Elution Buffer; Pierce) and positive fractions were pooled, desalted, and concentrated using a Cent ricon C-30 microconcentrator. Ten × 150-mm plates of confluent cells yielded ~4 μg of β-APP. Protein concentration was estimated by comparison of Coomasie brilliant blue staining with a series of standard samples of bovine serum album. Duplicate immunoblots were analyzed with the anti-APP antibody Ab-10 (ref. 44; 1:10,000 dilution) or 22C11 (ref. 3: 1:10,000).

For some experiments, β-APP was purified from conditioned MDCB-302 medium by conventional chromatography modified from published methods (44). Medium concentrated by ultrafiltration on an Amicon YM-3 membrane was loaded onto a Pharmacia Mono-Q HR5/5 anion-exchange fast protein liquid chromatography column equilibrated in 20 mM Tris-HCl (pH 7.4) and eluted at 1 ml/min with a 60-min linear gradient of 1 M NaCl. Fractions eluting at ~0.5–6.5 M NaCl contained the majority of β-APP as judged by immunoreactivity with 22C11. These fractions were pooled, concentrated by C-30 microconcentrator, and loaded onto a Tosohaas 60-cm G30SW FPLC column developed in phosphate-buffered saline at a rate of 0.5 ml/min. β-APP eluted at 14–20 ml, coinciding with a single peak of UV absorbance, and was used for subsequent experiments following recentration. Thirty × 150-mm plates of confluent cells yielded ~6.5 μg of β-APP.

Immunoprecipitation of Phosphorylated τ. PC-12 cells were radiolabeled for 165 min in DMEM with reduced phosphate (1% of normal) and 0.3–0.5 mCi of carrier-free [32P]orthophosphate (ICN) per ml. Incorporation of radiophosphate into nucleotides was measured by charcoal extraction (45). Following treatment with 1 μg of the Aβ40-40 antiserum kindly provided by A. Selkoe with 50 pg collect ed (27), a malized in inhibitors, Tris into scraped and anti-mouse antibodies room antibodies albumin, which contains small MAPK/ERK-1 antisera tion kindly provided by J. Blenis (27). Precipitates were collected with 50 μl of 10% protein A-Sepharose, washed as described (27), and assayed for kinase activity for 30 min at 30°C. Kinase reaction mixtures contained 15 μg of myelin basic protein, 50 μM γ-[32P]ATP (1 μCi; 1 Ci = 37 GBq), 10 mM MgCl₂, 5 mM benzamidine, 1 mM dithiothreitol, and 30 mM Hepes (pH 7.2) in a final volume of 30 μl. Reactions were terminated by boiling in SDS sample buffer, resolved on 15% polyacrylamide gels, and quantified by Phosphorimage analysis (Molecular Dynamics).

RESULTS

β-APP Secreted by CHO Cells Activates MAPK. A preliminary assay to screen for β-APP activity utilized medium conditioned by CHO cells stably transfected with the full-length 695-, 751-, or 770-amino acid form of β-APP. Following exposure of PC-12 cells to conditioned medium, activity of MAPK/ERK-1 in the PC-12 cell lysates was measured in immunocomplexes using myelin basic protein as substrate. Medium enriched in β-APP695, β-APP511, or β-APP770 activated MAPK/ERK-1 approximately 25-, 18-, and 17-fold, respectively, at 10 min (Fig. 1A). Stimulation declined with time of exposure but remained at least 50% of the peak activity after 1 hr of treatment (data not shown). Medium from untransfected CHO cells, which contains small amounts of β-APP (see Methods) as well as other possible growth factors, was used to stimulate MAPK to a much lesser extent (Fig. 1A, lane 3). Synthetic Aβ40 at 10 μg/ml (~1.75 μM) had no effect on MAPK activity (Fig. 1A, lane 2).

To confirm that the activity of the medium was due to secreted β-APP, this molecule was purified and added directly to PC-12 cells. Similar results were obtained using β-APP511 purified either by immunoprecipitation (Fig. 2A) or conventional chromatography (not shown). Protein purified from CHO(β-APP711)-conditioned medium appeared as a single band of 120 kDAs on gels stained with Coomassie brilliant blue (Fig. 2A, lane 1) and on immunoblots with antibodies to the carboxyl (Ab-10, lane 2) or amino terminus (22C11, not shown) of secreted β-APP. Purified β-APP stimulated MAPK in a dose-dependent manner with a nearly 2-fold activation at 20 pM and >10-fold at 2 nM (Fig. 2B). Prior immunoprecipitation of conditioned medium with anti-APP, an affinity-purified antibody raised against the peptide β-APP44-92, markedly diminished MAPK activation (Fig. 2C).

MAPKs are activated by phosphorylation on tyrosine and threonine residues (24). As an independent assay for MAPK activation, tyrosine phosphorylation in response to secreted β-APP was measured by anti-phosphotyrosine immunoblot. Treatment with conditioned medium (Fig. 3) or purified β-APP711 (not shown) resulted in increased tyrosine phos-
 Activation of MAPK by β-APP Is Dependent on p21^rms. Many growth factors that activate MAPK, such as NGF and fibroblast growth factor, do so through activation of the p21^rms protein (25–27). The dependence of β-APP on p21^rms was assayed in the PC-12-derived cell line GSRasDN6. GSRasDN6 cells express the dominant inhibitory Ha-Ras mutant RasS17N under control of the dexamethasone-responsive mouse mammary tumor virus promoter (26, 27). Induction of inhibitory ras, which had no discernible effect on kinase activity in untreated cells, prevented β-APP-stimulated MAPK activation as measured by immunocomplex kinase assay (Fig. 1C) or tyrosine phosphorylation (not shown). Similar results to those shown were also obtained for stimulation with purified secreted β-APP.

β-APP Stimulates Intracellular Phosphorylation of **τ.** MAPKs phosphorylate τ in vitro (30–33). To determine whether stimulation with secreted β-APP enhances phosphorylation of τ in intact cells, PC-12 cells were preincubated in [32P]orthophosphate and τ was immunoprecipitated with monoclonal antibody 5E2 following a heat extraction step. The treatments used did not significantly affect either the total amount of cellular τ as measured by immunoblot with 5E2 or incorporation of radiophosphate into the intracellular pool of nucleotides (data not shown). Increases in labeling of

Fig. 1. p21^rms-dependent activation of MAPK/ERK-1 by medium enriched in β-APP. (A) MAPK/ERK-1 activity in lysates from PC-12 cells treated for 10 min with control (C) medium, medium supplemented with 10 μg of Asp_{40} peptide per ml, or conditioned medium from CHO cells that are untransfected or transfected with human β-APP_{695}, β-APP_{751}, or β-APP_{770}. The arrowhead indicates the position of myelin basic protein serving as kinase substrate. (B) Dependence of MAPK stimulation on p21^rms. MAPK/ERK-1 activity was measured in GSRasDN6 cells. The inhibitory form of ras was induced in lanes 2 and 4 16 hr before exposure to control or conditioned medium. Dex, dexamethasone.

Fig. 2. Activation of MAPK/ERK-1 by purified secreted β-APP. (A) Preparation of immunoaffinity-purified secreted β-APP. Sample was detected by Coomassie brilliant blue (≈300 ng, lane 1) or immunoblot (≈40 ng, lane 2) with antiserum Ab-10. Silver stain of the sample in lane 1 detects trace amounts of breakdown products of β-APP that correspond to bands appearing on longer exposures of the immunoblot in lane 2. Molecular masses are indicated in kDa. (B) Activation of MAPK/ERK-1. Purified secreted β-APP (β-APPα) was added to control medium to the final concentrations shown and MAPK/ERK-1 activity was measured in immunocomplex as in Fig. 1. (C) Reduction in activity of CHO(β-APPα)-conditioned medium following immunoprecipitation with antibody to β-APP, Medium was preincubated and immunoprecipitated with (+) or without (−) anti-B5 antibody. Control immunoprecipitation with an affinity-purified anti-IgG antisera had no effect on MAPK stimulation (data not shown).

Fig. 3. Tyrosine phosphorylation of MAPKs. Conditioned medium from CHO(β-APP_{695}) and (β-APP_{770}) cells stimulates tyrosine phosphorylation of proteins that comigrate with MAPK/ERK-1 and -2. PC-12 cells were exposed to control (C) or conditioned medium for 10 min and immunoblots of cell lysates were probed with monoclonal antibodies to phosphotyrosine (lanes 1–3) or MAPK (lanes 4 and 5). The anti-MAPK antibody recognizes proteins of 44 and 42 kDa (arrowheads) that appear to be MAPK/ERK-1 and -2 (26, 27). Molecular masses are indicated in kDa.
precipitated protein thus represent increased incorporation of phosphate per mol of τ.

Fifteen-minute exposure to medium enriched in β-APP695 or β-APP770 (Fig. 4A, lanes 1–4) or purified β-APP731 (lanes 5 and 6) approximately doubled the amount of phosphate incorporated into τ. No significant increase was caused by medium from untransfected CHO cells (Fig. 4A) or by Aβ, a peptide (data not shown). To further support an association between MAPK activation and enhanced τ phosphorylation, two other treatments that activate MAPK were tested for their effect on τ phosphorylation: application of NGF and induction of the constitutively active Ha-Ras mutant RasQ61L in the GSrsl cell line (26, 27). Both NGF and the constitutive activation of ras by dexamethasone in GSrsl enhanced phosphorylation of τ (Fig. 4C), suggesting that τ phosphorylation, like activation of MAPK, was prevented in GSrslDN6 cells by the inhibition of inhibitory ras (Fig. 4B).

DISCUSSION

Our results demonstrate activation of a particular signal transduction system, the p21ras-dependent MAPK cascade, in response to secreted β-APP. The MAPK cascade, because of its central role in cell regulation (24), is a likely candidate for mediating at least some of the biological actions of β-APP (14–18). The low doses (< 100 pM) of β-APP required to stimulate MAPK are consistent with concentrations required for its described biological effects. It is not clear, however, that each of the biological actions of β-APP is mediated by a single mechanism, as studies aimed at ascertaining the molecule’s active site have given discrepant results (18, 47).

Secreted β-APP is a normal component in the extracellular compartment of the nervous system (2–4). The factors that regulate its level are unknown. The fairly steep decline in MAPK activity following stimulation suggests that with constant circulating levels of secreted β-APP, MAPK may maintain a relatively low basal activity. Under conditions when β-APP increases, such as during development, after injury, and in Down syndrome (1, 5, 6, 8–10), MAPK may reset at a higher level.

The link between β-APP and τ, the two key proteins comprising the structural basis for senile plaques and neurofibrillary tangles, respectively, is a central missing element in the pathogenesis of AD. These experiments suggest such a link through activation of MAPK. Of the many kinases that phosphorylate τ in vitro (21), the proline-directed kinases such as MAPK are among the likeliest to do so in vivo, considering the prevalence of phosphorylated Ser/Thr-Pro sequences in τ from PHFs and fetal brain (23, 34–37, 48, 49).

Our data provide further evidence for this idea: activation of MAPK in intact PC-12 cells is invariably accompanied by enhanced τ phosphorylation. The increased phosphorylation of τ in our experiments is relatively modest compared with the robust activation of MAPK, without an evident shift in τ’s electrophoretic mobility. The relatively small increase in phosphorylation is likely due to the high baseline level of τ phosphorylation observed in cultured cells (see also ref. 23) compared to mature brain tissue. Thus, even unstimulated PC-12 cells display considerable reactivity on immunoblotting with the phosphorylation-dependent τ antibody AT8 (S.M.G., unpublished results). Secreted β-APP generates further increases in AT8-reactive τ (S.M.G., unpublished results), indicating increased phosphorylation of at least one of the sites phosphorylated in PHF τ (35).

τ in the developing brain, like PHF τ, is hyperphosphorylated relative to normal adult τ (23, 48, 49). Phosphorylation of fetal τ could reflect activation of MAPK by neurotrophic factors during development, as many of its phosphorylation sites are also in vitro substrate sites for MAPK. Although fetal τ is phosphorylated at many of the same sites as PHF τ, it does not form PHFs. The abnormal properties of PHF τ may arise from phosphorylation at a wider array of sites within the molecule than occurs in fetal τ or, alternatively, from the occurrence of fetal-type phosphorylation within an adult cellular milieu. Persistent activation of MAPK in AD could increase phosphorylation of other cellular elements as well as τ, ultimately leading to the loss of cytoskeletal integrity and synaptic death that characterize the disease.

Complicating the problem of linking senile plaques and neurofibrillary tangles is the observation that, despite their comitant occurrence in the AD brain, the two lesions are
spatially dissociated (21). Our findings raise the possibility that secreted β-APP might promote PHF formation at sites remote from where Aβ deposits as amyloid fibrils. The actual distribution of secreted β-APP in the AD brain has not been established and, as a soluble molecule in the extracellular space, has been difficult to study. Immunoreactive β-APP, in many cases lacking the Aβ epitope, has been noted within the abnormal neurites that surround the senile plaque core (50–52).

Though we have discussed the effects of MAPK primarily from the standpoint of τ and the cytoskeleton, aberrant activation of this enzyme in the nervous system is likely to have far-ranging consequences. The results of MAPK activation appear to differ between neuronal and nonneuronal cells, as activation of p21^ras and MAPK in PC-12 cells causes neuronal differentiation rather than transformation (26, 27). It will be important to determine whether aberrant activation of signal transduction cascades can result in neurodegeneration.

This work was supported by an American Academy of Neurology research fellowship (to S.M.G.) and National Institutes of Health Grant AG06601 and a Zenith Award (to K.S.K.).