Ordered upwind methods for static Hamilton–Jacobi equations

J. A. Sethian* and A. Vladimirska

Department of Mathematics, University of California, Berkeley, CA 94720

Edited by Alexandre J. Chorin, University of California, Berkeley, CA, and approved June 1, 2001 (received for review May 4, 2001)

We introduce a family of fast ordered upwind methods for approximating solutions to a wide class of static Hamilton–Jacobi equations with Dirichlet boundary conditions. Standard techniques often rely on iteration to converge to the solution of a discretized version of the partial differential equation. Our fast methods avoid iteration through a careful use of information about the characteristic directions of the underlying partial differential equation. These techniques are of complexity $O(M \log M)$, where M is the total number of points in the domain. We consider anisotropic test problems in optimal control, seismology, and paths on surfaces.

Introduction

Equations and Discretizations. Consider the first-order nonlinear partial differential equation (PDE)

$$H(\nabla u(x), u(x), x) = 1 \quad x \in \Omega \subset \mathbb{R}^2$$

[1]

with the boundary condition $u(x) = g(x)$ given on $\partial \Omega$. Smoothness in boundary data does not guarantee that a smooth solution exists. For the class of Hamilton–Jacobi equations, weak solutions can be formally introduced; a unique viscosity solution can be defined by using conditions on smooth test functions (1, 2).

In this paper, we develop fast methods for approximating the solution to equations of this form. Start with a mesh X covering the domain Ω. Let U_i be the numerical solution value at the mesh point $x_i \in X$. Denote the set of mesh points adjacent to x_i as $N(x_i)$ and the set of values adjacent to U_i as $NU(x_i) = \{U_j | x_j \in N(x_i)\}$. Let \tilde{H} be a consistent discretization of H, such that one can write

$$\tilde{H}(U_i, NU(x_i), x_i) = 1.$$

[2]

If M is the total number of mesh points, then one needs to solve M coupled nonlinear equations simultaneously. One approach is to solve this nonlinear system iteratively. For example, iterative techniques for some equations arising in control theoretic problems are given in refs. 3, 11, and 23; an iterative technique for the Eikonal equation based on an upwind finite difference formulation is given in ref. 4.

Our goal in this work is to introduce a set of “single-pass” algorithms. By this term, we mean that each U_i is recalculated at most r times, where r depends only on Eq. 1 and the mesh structure but not on the diameter of the mesh.

Characteristics and Ordering Updates. To construct single-pass algorithms with efficient update orderings, we utilize the fact that the value of $u(x)$ for the first-order PDE depends only on the value of u along the characteristic(s) passing through the point x. If $x_i, x_j \in N(x_i)$ are such that the characteristic for the mesh point x_i lies in the simplex $x_i x_j x_k$, then it is useful to consider an upwind discretization of the PDE:

$$\tilde{H}(U_i, U_{i+1}, U_{i-1}, x_i) = 1.$$

[3]

This reduces the coupling in the system: U_i depends only on U_{i+1} and U_{i-1} and not on all of the $NU(x_i)$. A recursive construction allows one to build the entire dependency graph for x_i. If two or more characteristics collide at a point x, the solution loses smoothness. The entropy condition does not allow characteristics to be created at these collision points; hence, if x_i is far enough from these collision points, its dependency graph is actually a tree.

If the characteristic directions of the PDE were known in advance, then the dependency ordering of the grid points would be known as well, leading to a fully decoupled system. Formally, this construction would lead to an $O(M)$ method.

In general, characteristic directions are not known in advance. Nonetheless, a family of algorithms can be devised in which information about characteristic directions is computed as the solution is constructed. We refer to this class of methods as “ordered upwind methods;” the computational complexity is $O(M \log M)$, where M is the number of mesh points, and the M term results from the ordering process.

Previous Work

Dijkstra’s Method. Dijkstra’s method (5) is the classic single-pass algorithm for computing the minimal cost of reaching any node on a network. For simplicity, consider a rectangular grid of size h, where the cost $C_{ij} > 0$ is given for passing through each grid point $x_{ij} = (ih, jh)$. Given a starting point, the minimal total cost U_{ij} of arriving at the node x_{ij} can be written in terms of the minimal total cost of arriving at its neighbors:

$$U_{ij} = \min(U_{i-1,j}, U_{i+1,j}, U_{i,j-1}, U_{i,j+1}) + C_{ij}.$$

[4]

To find the minimal total cost, Dijkstra’s method works as follows. All mesh points are divided into three classes: Far (no information about the correct value of U is known), Accepted (the correct value of U has been computed), and Considered (adjacent to Accepted).

(i) Start with all mesh points in Far ($U_{ij} = \infty$).

(ii) Move boundary mesh points ($x_{ij} \in \partial \Omega$) to Accepted ($U_{ij} = g(x_{ij})$).

(iii) Move all mesh points x_{ij} adjacent to the boundary into Considered and evaluate the tentative value of U_{ij} by using the values at the adjacent Accepted mesh points according to formula 4.

(iv) Find the mesh point x_{ij} with the smallest value of U among all the Considered.

(v) Move x_{ij} to Accepted.

(vi) Move Far mesh points adjacent to x_{ij} into Considered.

(vii) Re-evaluate the value for all Considered x_{ij} adjacent to x_{ij}. If the new computed value is less than the previous tentative value for x_{ij}, then update U_{ij}.

(viii) If Considered is not empty, then go to iv.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: PDE, partial differential equation.

See commentary on page 10992.

*To whom reprint requests should be addressed. E-mail: sethian@math.berkeley.edu.

†For the sake of notational clarity, we restrict our discussion to R^1; all results can be restated for R^d and for meshes on manifolds.
The described algorithm has the computational complexity of $O(M \log(M))$: the factor of $\log(M)$ reflects the necessity of maintaining a sorted list of the considered values U_i to determine the next Accepted mesh point. An efficient implementation of the algorithm can be built by using heap-sort data structures.

Dijkstra’s method can be viewed as an algorithm for computing the solution to the “discrete” optimal trajectory problem on a specified network. As pointed out in ref. 6, the D_j obtained through Dijkstra’s method on the Cartesian grid is formally a first-order approximation to the solution $u(x, y)$ of the differential equation

$$H(\nabla u(x), u(x), x) = \max(|u_i|, |u_j|) = C(x),$$ \hspace{1cm} [5]

provided the link costs are $C_{ij} = hC(x)$. This equation, however, is different from the Eikonal equation, which describes the isotropic optimal trajectory (and front propagation) problems in the continuous case.

The Eikonal Equation. Two different Dijkstra-like single-pass methods have been developed in recent years for the Eikonal equation:

- **Isotropic front propagation problems.**
- **Isotropic min-time optimal trajectory problems.**

The connections between these two perspectives are explored in detail in ref. 7. In the control-theoretic context, the characteristic lines of Eq. 6 can also be interpreted as the optimal trajectories.

A key feature of Eikonal equations is that their characteristic lines coincide with the gradient lines of the viscosity solution $u(x)$; this allows the construction of single-pass algorithms. This property guarantees that if $x_i, x_j, x_k \in \Omega(x)$ are such that the characteristic for the mesh point x_i lies in the acute simplex $x_i x_j x_k$, and if that simplex is sufficiently small, then $u(x_i) \approx \max(u(x_i), u(x_j), u(x_k))$ (see Fig. 1, for example).

This observation has been used to build two different fast Dijkstra-like methods for the Eikonal equation: Tsitsiklis’ Algorithm (8) and Sethian’s Fast Marching Method (9). By using different upwinding discretizations $H(U_i, U_j, U_k, x_i) = 1$ of the Eikonal equation, Tsitsiklis (8) and Sethian (10) have shown that the following causality property holds, namely:

If x, x_i, x_j is an acute simplex containing the characteristic for x_i then the computed $U_i \geq \max(U_{.1}, U_{.2})$, regardless of the size of that simplex.

A control-theoretic single-pass algorithm for the Eikonal equation. Tsitsiklis’ algorithm evolved from studying isotropic min-time optimal trajectory problems. Tsitsiklis has shown that Property (*) holds for the first-order control-theoretic upwinding discretization

$$U_i = \min \{ \tau(t)(K(x) + \theta U_{i2} + (1 - \theta) U_{j1}), \}$$ \hspace{1cm} [7]

where $\tau(t) = \|0x_i + (1 - \theta)x_j - x_k\|$. If θ is the minimizer, then the direction $(\theta x_i + (1 - \theta)x_j - x_k)$ is the approximation of the characteristic direction for x_i. The dynamic programming motivation and further details can be found in ref. 8.

A finite-difference single-pass algorithm for the Eikonal equation. The Fast Marching Method evolved from studying isotropic front propagation problems. Sethian has shown that the Property (*) holds for the following finite-difference upwinding discretization.\footnote{In ref. 8, the property is proven for the discretization on a uniform Cartesian grid only; the corresponding lemma for triangulated acute meshes is proven in ref. 22. An iterative approach to the corresponding system of discretized equations was earlier used in refs. 3, 11, and 23.}

Let $P_1 = (x_i - x_j)/\|x_i - x_j\|$ and $P_2 = (x_i - x_k)/\|x_i - x_k\|$. If P is the matrix with rows P_1 and P_2, then Eq. 6 can be rewritten as

$$\begin{pmatrix} U_j - U_i \\ |x_i - x_j| \end{pmatrix} (P P^T)^{-1} \begin{pmatrix} U_j - U_i \\ |x_i - x_k| \end{pmatrix} = K^2(x_i).$$ \hspace{1cm} [8]

This quadratic equation is solved for U_i, and the additional upwinding requirement is verified (see ref. 13 for details).

The causality property guarantees that the discretized equations can be solved one by one (i.e., not simultaneously) if one solves them in the order of increasing values of U: thus, each of the two presented fast Eikonal solvers can be considered as a decoupling of a particular coupled discretization.

If the ascending ordering of the mesh points based on U were a priori known, these methods would have a computational complexity of $O(M \log(M))$. Since the ordering has to be determined in the process of computation, both methods resolve this problem in the manner similar to Dijkstra’s method, and the resulting complexity is $O(M \log(M))$.

Higher-order versions of the Fast Marching Method together with numerical convergence tests are presented in ref. 6. Extensions to triangulated manifolds are derived in refs. 12, 13. Some early applications of the methodology include photolithography in ref. 9, a comparison of a similar approach with volume-of-fluid techniques in ref. 14, and a fast algorithm for image segmentation in ref. 15.

Static Hamilton–Jacobi Equations

We now introduce a family of single-pass methods for a much more general class of PDEs, namely

$$H(\nabla u(x), x) = 1, \hspace{1cm} x \in \Omega,$$ \hspace{1cm} [9]

$$u(x) = q(x), \hspace{1cm} x \in \partial \Omega.$$
where q and H are assumed to be Lipschitz-continuous, and the Hamiltonian H is also assumed to be convex and homogeneous of degree one in the first argument: $H(\nabla u, x) = \|\nabla u\|F((\nabla u/\|\nabla u\|), x)$ for some function F. We will further assume that $0 < F_1 \leq F(p, x) \leq F_2 < \infty$ for all p and x.

This equation can also be viewed in different frameworks:

- **Anisotropic front expansion (contraction) problems**, in which the speed of the front F in the normal direction depends not only on the position but also on the orientation of the front, provided that the resulting Hamiltonian is convex. For example, consider the front propagation problem

$$F\left(\frac{\nabla u}{\|\nabla u\|}, x\right)\|\nabla u\| = 1,$$

where the speed $F\left(\frac{\nabla u}{\|\nabla u\|}, x\right) = \left(\frac{\|\nabla u\|}{\|\nabla u\|}\right)\gamma + 1$, with a given vector ν. This corresponds to anisotropic front motion, in which the fastest speed occurs when the normal to the front is pointing in the direction $\pm \nu$.

- **Anisotropic min-time optimal trajectory problems**, in which the speed of motion depends not only on position but also on direction. The value function u for such problems is the viscosity solution of the static Hamilton–Jacobi–Bellman equation

$$\max_{a \in \mathbb{R}^n} \left(\nabla u(x) \cdot (a - a)\right) = 1, \quad x \in \Omega, \quad x \in \partial\Omega. \quad [11]$$

In this formulation, a is the unit vector determining the direction of motion, $f(a, x)$ is the speed of motion in the direction a starting from the point $x \in \Omega$, and $\gamma(x)$ is the time penalty for exiting the domain at the point $x \in \partial\Omega$. The maximizer a corresponds to the characteristic direction for the point x. If f does not depend on a, Eq. 11 reduces to the Eikonal equation (see ref. 16). For background discussion of control theory, see refs. 3, 7, 11, 16, or 17.

Characteristics vs. Gradients. Building a single-pass ordered upwind method for these anisotropic problems described by Eq. 9 is considerably more challenging than for the Eikonal case, because the characteristics no longer coincide with the gradient lines of the viscosity solution. As a result, the characteristics and gradient lines may in fact lie in different simplexes (see Fig. 2).

In fact, even if the characteristic for x lies in the simplex $\Delta a_1 \Delta a_2 \Delta$, it is still possible that $u(\Delta x) < u(\Delta x_1)$ or $u(\Delta x) < u(\Delta x_2)$. This is precisely why both the Fast Marching Method and Tsitsiklis’ Algorithm cannot be directly applied in the anisotropic (non-Eikonal) case: it is no longer possible to decouple the system by computing/accepting the mesh points in ascending order. Thus, we must devise a causality relationship more carefully.

Ordered Upwind Methods. In order to build single-pass methods for this more general equation, we capitalize on the more fundamental properties of the Hamilton–Jacobi–Bellman PDEs,

\[NF(x) = \left\{(x_i, x_k) \in AF \mid \exists k \text{ on } (x_i, x_k) \text{ s.t. } \|\Delta x\| \leq \frac{F_2}{F_1}\right\}.\]

We will further assume that some consistent upwinding update formula is available: if the characteristic for x_i lies in the simplex $\Delta x, x_i, x_k$, then $U_i = G(U_j, U_k, x_i, x_j, x_k)$. For the sake of notational simplicity, we will refer to this value as $G_{i,j,k}$.

(i) Start with all mesh points in Far ($U_i = \infty$).
(ii) Move the boundary mesh points \((x_i \in \partial \Omega)\) to Accepted \((U_i = q(x_i))\).

(iii) Move all mesh points \(x_i\) adjacent to the boundary into Considered and evaluate the tentative value of \(U_i = \min_{x_j \in \Omega} F(x_j) G_{ij}\).

(iv) Find the mesh point \(x_i\) with the smallest value of \(U\) among all the Considered.

(v) Move \(x_i\) to Accepted and update the AcceptedFront.

(vi) Move Far mesh points adjacent to \(x_i\) into Considered.

(vii) Recompute the value for all the Considered \(x_i\) within the distance \(h(F_2/F_1)\) from \(x_i\). If the new computed value is less than the previous tentative value for \(x_i\), then update \(U_i\).

(viii) If Considered is not empty, then go to iv.

- **Efficiency:** This results in a “single-pass” method, because the maximum number of times each mesh point can be re-evaluated is bounded by the number of mesh points in the \(h(F_2/F_1)\) neighborhood of that point. Thus, this method formally has the computational complexity of \(O((F_2/F_1)^2M \log(M))\). Moreover, because the AcceptedFront is approximating the level set of the viscosity solution \(u\), as the mesh is refined, the complexity will behave as \(O((F_2/F_1)^2M \log(M))\).

- **Convergence:** Convergence of the method depends on the upwinding update formula \(U_i = g(U_i, U_k, x_i, x_k)\). In refs. 17 and 22, we prove the convergence to the viscosity solution of PDE \(11\) by using the particular update formula

\[
U_i = \min_{\theta \in [0,1]} \left\{ \frac{\tau(\theta)}{f(x, a)} + (\theta U_i + (1-\theta) U_k) \right\}, \tag{15}
\]

where \(\tau(\theta) = \|x_i + (1-\theta)x_k - x_i\|\) and \(a = (\theta x_i + (1-\theta)x_k - x_i) / \tau(\theta)\). This upwinding formula is the anisotropic generalization of update formula \(7\) for the Eikonal equation; it is also used as a building block for the general numerical scheme described in refs. 11 and 3. That scheme computes \(U_i\) on the basis of \(N(U(x_i), i.e., all x_i, x_k \) immediately adjacent to \(x_i\) are considered. Unfortunately, that scheme also leads to the coupled system of \(M\) nonlinear equations, which cannot be directly decoupled due to the difference between the gradient and characteristic directions. Thus, our method can be considered as an indirect decoupling of the scheme described in refs. 11 and 3.

- In refs. 17 and 22, we also use the above method with other upwinding update formulas, obtained as the anisotropic generalizations of discretization \(8\). The advantage of this approach is that it can be easily generalized for the higher-order upwinding finite difference approximations.

Numerical Results

In this section, we consider three different test problems, each of which can be described by a non-Eikonal (anisotropic) Hamilton–Jacobi PDE. In each case, the speed function is assumed to be known from the characterization of a particular application domain. For example, in the optimal trajectory test problem, \(f(x, a)\) reflects assumptions about the speed of the controlled vehicle, whereas in the seismic imaging test problem, the front expansion speed \(F\) is derived using assumptions about the elliptical nature of the “impulse-response surface” for the anisotropic medium.

Geodesic Distances on Manifolds. The first test problem is to find the geodesic distance on the manifold \(z = g(x, y)\). As described in refs. 6 and 12, this can be accomplished by approximating the manifold with a triangulated mesh and then solving the distance equation \(|\nabla u| = 1\) on that mesh. Since the latter equation is

\[
Eikonal, the Fast Marching Method can be used to solve it efficiently. However, if one desires to formulate the problem in the \(x-y\) plane instead of the intrinsic manifold coordinates, then the corresponding equation for \(u\) is not Eikonal. Indeed, the geodesic distance function \(u\) has to satisfy Eq. 9 with the speed function \(F\) defined as:

\[
F(\omega, x, y) = \frac{1 + g_x^2 \cos^2(\omega) + g_y^2 \sin^2(\omega) - g_x g_y \sin(2\omega)}{1 + g_x^2 + g_y^2}, \tag{16}
\]

where \(\omega\) is the angle between \(\nabla u(x, y)\) and the positive direction of the \(x\) axis. The degree of anisotropy in this equation is substantial, because the dependence of \(F\) on \(\omega\) can be pronounced when \(\nabla g\) is relatively large.1

As noted in Static Hamilton–Jacobi Equations, \(u\) can also be considered as a value function for the corresponding min-time optimal trajectory problem and must, therefore, satisfy Eq. 11. Using the homogeneous Legendre transform on \(F\), we obtain the speed function \(f(a, x, y)\) for the optimal trajectory problem:

\[
f(a, x, y) = (1 + (\nabla g(x, y) a)^2)^{-1/2}, \tag{17}
\]

where \(a\) is a vector of unit length, and \(f\) is the control-theoretic speed of motion in the direction \(a\) (see ref. 17 and an unpublished work for details).

As an example, we consider the manifold

\[
g(x, y) = 0.75 \sin(3\pi x) \sin(3\pi y)
\]

and compute the geodesic distance on it from the origin (see Fig. 3). The “anisotropy coefficient” for this problem is

\[
\max_{x,y} \frac{F_2(x, y)}{F_1(x, y)} = \frac{\sqrt{32 + 81\pi^2}}{4\sqrt{2}} \approx 5.1.
\]

1The algorithm presented in ref. 12 on the manifold-approximating mesh is more efficient for this problem; here, it serves as a convenient test problem for the general anisotropic case: the numerical solution obtained by the Fast Marching Method on the manifold can then be compared to the solution obtained by the “general” method in the \(x-y\) plane. We note, of course, that only specific anisotropic problems can be converted into Eikonal equations on manifolds; see ref. 13 for details.
Fig. 4. The vehicle’s speed profiles for eight different points on the circle.

We have performed the calculations using the first-order discretization 15 on a regular mesh with 292 × 292 mesh points.

Min-Time Optimal Trajectory. Our second example is a particular min-time optimal trajectory problem. Suppose that a vehicle’s dynamics \(z(t) \) in the square \([-0.5, 0.5] \times [-0.5, 0.5] \) is described by

\[
\begin{align*}
 \frac{dz}{dt}(t) &= \vec{a}(t) + b(z(t)), \\
 z(0) &= \begin{bmatrix} x \\ y \end{bmatrix}
\end{align*}
\]

where the advection velocity \(b : \mathbb{R}^2 \to \mathbb{R}^2 \) is known and \(\vec{a} : \mathbb{R}^2 \to S_1 \) is the control. We further assume that \(\|b(x, y)\| < 1 \) for all \((x, y) \in [-0.5, 0.5] \times [-0.5, 0.5] \). The optimal control \(\vec{a}(\cdot) \) will minimize the time it takes for the vehicle to reach the origin from the point \(x \). The value function \(u(x) \) corresponding to that minimal time is the viscosity solution of the Hamilton–Jacobi–Bellman Eq. 11 with the boundary condition \(u(0, 0) = 0 \). The speed profile for the point \(x \) is a unit circle displaced by vector \(b(x, y) \) (see Fig. 4, for example). The corresponding speed function is

\[
f(a, x) = a \cdot b + \sqrt{|a|^2 - b^2} + 1,
\]

where the direction of motion is \(a = \frac{(\vec{a} + b)}{||\vec{a} + b||} \).

If \(b(x, y) = (b_1(x, y), b_2(x, y)) \), then we can rewrite the Hamilton–Jacobi PDE satisfied by \(u(x, y) \) as follows:

\[
(1 - b_1^2)u_x^2 + (1 - b_2^2)u_y^2 - 2b_1b_2u_xu_y - 2b_1u_x - 2b_2u_y = 1,
\]

\[
u(0, 0) = 0,
\]

As an example, we consider a particular advection velocity

\[
b(x, y) = (-0.9 \sin(4\pi x) \sin(4\pi y)/\sqrt{x^2 + y^2})
\]

(see Fig. 5). The “anisotropy coefficient” for this problem is

\[
F_2(x, y) = \max_{x,y} \frac{1 + \|b(x, y)\|}{1 - \|b(x, y)\|} = 19.
\]

We have performed the calculations using the first-order discretization 15 on a regular mesh with 96 × 96 mesh points.

First Arrivals in Inhomogeneous Anisotropic Medium. Finally, we include an example of first arrival travel times with applications to seismic imaging. We start with a computational domain that suggests material layering under a sinusoidal profile. The computational domain is the square \([-a, a] \times [-a, a] \), with layer shapes

\[
C(x) = A \sin \left(\frac{m \pi x}{a} + \beta \right),
\]

where \(A \) is the amplitude of the sinusoidal profile, \(m \) is the number of periods, and \(\beta \) is the phase offset. The domain is split into \(n \) layers by the curves \(y_i(x) = C(x) + b_i \), where \(i = 1, \ldots, n \).

In each layer, the anisotropic speed at a point \((x, y)\) is given by an ellipse with bigger axis (of length \(2F_2 \)) tangential to the curve \(C(x) \) and the smaller axis (of length \(2F_1 \)) normal to the curve. \(F_1 \) and \(F_2 \) are constants in each layer. Thus, the ellipse’s orientation and shape depend on the local position.

This leads to an anisotropic Hamilton–Jacobi equation of the form:

\[
\|\nabla u(x, y)\|F = 1, \quad u(0, 0) = 0,
\]

where the speed profile at any point \((x, y)\) satisfies

\[
F(x, y, u_x, u_y) = F_2 \left(\frac{(1 + q^2)u_x^2 + (1 + p^2)u_y^2 - 2pqu_xu_y}{(1 + p^2 + q^2)(u_x^2 + u_y^2)} \right)^{1/2},
\]

with

\[
\frac{p}{q} = \frac{\sqrt{F_2/F_1} - 1}{\sqrt{1 + (dC/dx)^2} - 1}.
\]

Here, \(F_1 \) and \(F_2 \) are the ellipse semi-axes for the layer corresponding to the point \((x, y)\).

The results are shown in Fig. 6. We take \(a = 0.5, A = 0.1225, m = 2, \beta = 0 \), and layer offsets \(b_i = (-0.25, 0, 0.25) \). All calculations are on a 193 × 193 mesh. The \((F_2, F_1)\) pair for each layer is given in Figs. 6 A–D.
We thank L. C. Evans, M. Falcone, and O. Hald for valuable mathematical conversations and encouragement. This work was supported by the Applied Mathematical Sciences Office of Energy Research, U.S. Dept. of Energy (DE-AC03-76SF00098), Office of Naval Research (FDN00014-96-1-0381), and the Division of Mathematical Sciences, National Science Foundation.