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A major challenge in DNA microarray analysis is to effectively
dissociate actual gene expression values from experimental noise.
We report here a detailed noise analysis for oligonuleotide-based
microarray experiments involving reverse transcription, genera-
tion of labeled cRNA (target) through in vitro transcription, and
hybridization of the target to the probe immobilized on the
substrate. By designing sets of replicate experiments that bifurcate
at different steps of the assay, we are able to separate the noise
caused by sample preparation and the hybridization processes. We
quantitatively characterize the strength of these different sources
of noise and their respective dependence on the gene expression
level. We find that the sample preparation noise is small, implying
that the amplification process during the sample preparation is
relatively accurate. The hybridization noise is found to have very
strong dependence on the expression level, with different charac-
teristics for the low and high expression values. The hybridization
noise characteristics at the high expression regime are mostly
Poisson-like, whereas its characteristics for the small expression
levels are more complex, probably due to cross-hybridization. A
method to evaluate the significance of gene expression fold
changes based on noise characteristics is proposed.

DNA microarray technology has a profound impact on bio-
logical research as it allows the monitoring of the transcrip-

tion levels of tens of thousands of genes simultaneously. In the
near future, it will be possible to profile the whole transcriptome
of higher organisms, including Homo sapiens, with only a few
DNA gene chips. This will allow us to obtain a global view of the
genotypes corresponding to different cell phenotypes. Such
capability will greatly accelerate and perhaps fundamentally
change biomedical research and development in many areas,
ranging from developing advanced diagnostics to unraveling
complex biological pathways and networks, to eventually facil-
itating individual-based medicine (1, 2).

DNA microarray technology, however, is not without caveats.
One of the major difficulties in deciphering high throughput
gene expression experiments comes from the noisy nature of the
data. In general, the changes in the measured transcript values
between different experiments are caused by both biological
variations (corresponding to real differences between different
cell types and tissues) and experimental noise. To correctly
interpret the gene expression microarray data, it is crucial to
understand the sources of the experimental noise.

Previous works (3, 4) studied some aspects of the noise in
DNA microarray experiments. In this article we report on
detailed studies of the experimental noise occurring at subse-
quent steps in high-density oligonucleotide-based microarray
(Affymetrix, Santa Clara, CA) assays. Elucidating the sources of
noise may be of help for identifying the steps of the techniques
that need to be modified to improve the signal-to-noise ratio.
Our results show that it is the hybridization (including the
subsequent readout) step, as opposed to the sample preparation
step where most of the noise originates. Based on these results,
we propose a data analysis method that takes into consideration
the quantitative characterization of the noise, and thus provides
a tool for evaluating the statistical significance of gene expres-
sion changes from different microarray experiments.

Materials and Methods
We study the measurement noise by replicate experiments in
which gene expression levels of a cell line are measured multiple
times. Two sources of experimental noise can be identified from
the extracted mRNA to the final readout of the gene expression
levels: the prehybridization target sample preparation steps and
the hybridization and the subsequent readout processes (includ-
ing staining and scanning). For simplicity, we refer to these two
sources of noise as sample preparation noise and hybridization
noise, respectively, throughout this article. To separate the noise
sources caused by these two factors, we have carried out multiple
replicate experiments, where at different stages of the experi-
ment, the sample is divided equally into multiple aliquots, and
the subsequent steps of the experiment are carried out indepen-
dently. In this article, mRNA from cells of a human Burkitt’s
lymphoma cell line (Ramos) is used for the replicate experi-
ments. Total RNA is extracted from the Ramos cells. The
purified RNA sample subsequently is separated equally into
several subgroups. Each subgroup independently goes through
the target preparation steps, composed of the reverse transcrip-
tion step and in vitro transcription (IVT) step. At the end of the
target sample preparation, each of the subgroups is again split
into several samples, each of which is independently hybridized
to different Affymetrix U95A GeneChip arrays. The experimen-
tal design is shown schematically in Fig. 1. To have sound
statistics and ensure the experimental statistics are independent
of the starting mRNA, we have repeated the above replicate
experiments with total RNA taken from two different cultures
of the Ramos cells, as represented in Fig. 1, where experiments
1–4 and experiments 5–10 start from the different RNAs.

Sample preparation starting from 5 �g total RNA, hybridiza-
tion, staining, and scanning were performed according to the
Affymetrix protocol. Unless indicated otherwise, our analysis
uses the (average difference-based) expression values obtained
by Affymetrix MICROARRAY SUITE (MAS) version 5.0 with all of
the default parameters and target intensity set to 250. The
expression values from earlier versions of MAS (versions 4.0 and
3.1) were used only for comparison purposes.

Results and Discussion
From the experiments described above, we obtain a gene ex-
pression value matrix {Ei,j}, where i � 1,2, . . . ,10 represents all
of the experiments shown in Fig. 1 and j � 1,2, . . . , J labels all
of the individual genes being probed. For the U95A chip we used,
J � 12,600. Due to the large variation in measured gene
expression values, the analysis in this section is performed by
using the logarithm of the expression level: �i,j � ln(Ei,j).

For a pair of experiments i1 and i2, the overall differences in
gene expression can be visualized by plotting �i1, j versus �i2, j for
all genes on the microarray. In Fig. 2, two pairs of experiments
(1 and 3 and 1 and 10) are shown. The deviation of the scattered
points from the diagonal line represents the difference between
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the two measured transcriptomes. Although Fig. 2 a and b
appear similar, the reasons for the deviation of the expression
values from the diagonal line are different. Experiments 1 and
3 measure mRNA levels of exactly the same sample, so the
observed expression differences between these experiments are
caused by measurement error alone. On the other hand, samples
1 and 10 are from different cultures of the cell line, so the
measured expression value differences as shown in Fig. 2b
contain the combined effect of the genuine gene expression
differences between the two cultures together with differences
caused by measurement error. Therefore, to correctly assess the
statistical relevance of the measured gene expression differences
between two experiments, such as 1 and 10, it is crucial to
characterize the fluctuation caused purely by experimental
measurement, such as the noise shown in Fig. 2a.

Although experimental noise is known to be a feature of
microarray experiments, only recently has it been studied sys-
tematically by replicate experiments (3, 4). In particular, for the
oligonucleotide microarrays, Novak et al. (3) characterized the
dispersion between two experiments by the SD of their corre-
sponding gene expression levels. Using this measure of disper-
sion, they studied the different effects of experimental, physio-
logical, and sampling variability, which provide important
guidance for microarray experiment design. In this article, we
focus on understanding how different experimental steps con-
tribute to the total noise and what the possible mechanism for
the noise could be. We also study the distribution of the noise in

detail, which is used in devising a statistical method to determine
differentially expressed genes.

To separate the different noise sources, we group all of the
replicate experiment pairs into two groups. Group G1 consists of
all of the pairs that differ only in the hybridization step:

G1 � ��1, 2�, �3, 4�, �5, 6�, �8, 9�, �9, 10�, �8, 10��.

Group G2 consists of all of the replicate experiment pairs that are
carried out separately right after the extraction of the mRNA:

G2 � ��1, 3�, �1, 4�, �2, 3�, �2, 4�, �5, 7�, �5, 8�, �5, 9�, �5, 10�,

�6, 7�, �6, 8�, �6, 9�, �6, 10�, �7, 8�, �7, 9�, �7, 10��.

Although gene expression differences between pairs of experi-
ments in G2 represent the full experimental noise, G1 has been
constructed to extract the noise caused by hybridization alone.
For reference, we also group all of the nonreplicate experiment
pairs into group G3 � {(i, j), 1 � i � 4, 5 � j � 10}.

The Noise Distribution. It is evident from Fig. 2 that the noise
depends strongly on the expression level. Therefore, an expres-
sion-dependent distribution function is needed to characterize
the variability between replicates. Given two measured gene
expression values, �1 and �2, for the same gene from two replicate
experiments, the estimated value of the true expression level, �� ,
and the size of the measurement error, ��, can be defined as: �� �
(�1 � �2)�2, �� � (�1 ��2)�2. �� is discretized with a relatively
small bin size of 0.25 throughout this article to maintain a good
resolution while having sufficient data points per bin. The results
are insensitive to the exact choice of the bin size. For a given
�� , the average of �� between two experiments should be zero:
	��
��� � 0. Any significantly nonzero value of 	��
��� is caused by
systematic experimental errors whose source is beyond the scope
of our current study. This error typically appears as a departure
from the diagonal of the scatter plots of Fig. 2. A hint of it can
be seen at the higher values of Fig. 2b. Even though this was not
a big problem for our data sets, we compensated for such error
whenever it occurred by subtracting any nonzero 	��
��� from ��
for each replicate experiment pairs for all of the subsequent
analysis.

Within each group Gk (k � 1, 2), the distribution of �� for a
given �� can be obtained from each pair of replicate experiments,
these distributions are found to be highly consistent with each
other (data not shown). To gain better statistics, we use the gene
expression values from all of the pairs of replicate experiments
in Gk to construct the noise distribution: Pk(��
�0) �
Probk(��
�� � �0). In Fig. 3a, the noise distribution functions for
different values of �0 are shown. We use the second-order
moment to quantify the strength of the noise and its dependence
on the value of the expected expression level �0:

�k
2��0� � �

��

�

��2Pk�����0�d��. [1]

In Fig. 3c, we show the dependence of �2 on �0. For reference,
we have calculated �3, the difference in gene expression between
pairs of experiments in group G3 in the same way as we
calculated �1,2 and plotted it in Fig. 3c as well. It is interesting
that �3 is consistently larger than �2 for �0 � 2, indicating the
existence of signal beyond noise even for the small differences
between the same cell line from different cultures.

For a given �0, we can define the rescaled noise ��
 �
����k(�0) and obtain the distribution function for ��
:
Qk(��

�0). We find that except for very small values of �0, the
Qk(��

�0) collapse onto a single curve �(��
) independent of �0

Fig. 1. Illustration of the replicate experiments setup. Two different mRNA
samples are used, each being probed multiple times (replicates) with varying
degrees of differences in measurement steps to separate the preparation
error that occurred during the reverse transcription (RT) and IVT processes and
the final hybridization (Hyb.) error.

Fig. 2. The scatter plots of gene expression value pairs (�i1, j,�i2, j) for all genes
j � [1,J] and for: (a) experiments pair (1 and 3), where the deviation from the
diagonal axis is caused purely by experimental error; (b) experiment pair (1
and 10), where true differences exist between the two transcriptomes.
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and k, as shown in Fig. 3b (for k � 2 only). Equivalently, this
means the distribution for �� can be well approximated by:

Pk�����0� �
1

�k��0�
������k��0��, [2]

for �0 � 2, which includes more than 90% of the data. The
rescaled distribution function is found to have an exponentially
decaying tail in contrast with a Gaussian distribution. In fact,
�(x) can be approximated very well by an empirical function
�(x) � 1�2 exp(�x2�0.5 � 0.6
x
) shown in Fig. 3b (thick solid
line).

From Eq. 2, we see that all of the expression-dependent
information in the noise is given by the variance �k

2(�0) for �0 �
2. In the following two subsections, we focus on analyzing the
dependence of the noise strength �k

2(�0) on the expression value.

Sample Preparation Noise. To dissect the origins of noise, we divide
the total measurement noise into two parts: the first is sample
preparation noise ��prep caused by the prehybridization steps
such as reverse transcription and IVT; the second is hybridiza-
tion noise ��hyb. For replicate pairs in group G1 and G2, the noise
can be expressed, respectively, as: ��1 � ��hyb, ��2 � ��prep �
��hyb. Assuming the two sources of noise are independent of each
other, their variances can be obtained by: �hyb

2 � 	��hyb
2 � � �1

2,
�prep

2 � 	��prep
2 � � �2

2 � �1
2, where �1,2

2 can be computed from
Eq. 1.

In Fig. 4, we show �1
2(�0) (dotted line) and �2

2(�0) (solid line)
versus the expected value of the expression level �0. Although the
difference between �2 and �1 is small in comparison with �2,
�1(�0) is consistently smaller than �2(�0) for all of the values of
�0 � 2. This should be so because the difference between �2 and
�1 accounts for the sample preparation noise: this difference,
albeit small, is real.

We have plotted the dependence of �prep
2 versus �0 in Fig. 4 Inset.

We find that the dependence of �prep
2 on the expression level �0 can

be well approximated by:

�prep
2 � 1.9 � 10	3 
 0.12e	�0. [3]

The constant first term dominates the sample preparation noise
for expression values �0 � 4.

To understand the possible mechanisms for such noise be-
havior as shown in Eq. 3, it is convenient to translate the above
noise strength in � (� ln(E)) to the noise strength in intensity E:
�E

2 (E0) � 	�E2� � E0
2	��2�, where E0 � exp(�0) and �E � E � E0.

By using the numerical fit for �prep
2 , the variance of the sample

preparation noise �Eprep, �E,prep
2 , can written as:

�E,prep
2 �E0� � 	�Eprep

2 � � 1.9 � 10�3E0
2 
 0.12E0. [4]

The two terms in the above expression represent two indepen-
dent sources of noise, which we discuss in the following.

For the first term, �Eprep is proportional to the gene expression
E0 itself. To understand this term, it is important to realize that
during sample preparation the mRNA is first reverse-transcribed
into cDNA, and cRNA is subsequently generated from cDNA by
IVT. The number of RNA molecules is amplified during the
IVT, i.e., NcRNA � A � NmRNA, where A is the amplification rate
and NmRNA, NcRNA are the numbers of mRNA and cRNA
molecules, respectively. A varies between one sample prepara-
tion process and another due to fluctuations in the reaction
conditions, including fluctuation due to handling of the sample
(human factors). The fluctuation of A between different sample
preparation processes, denoted as �A, leads to a fluctuation in
NcRNA of the form �A � NmRNA. Because NmRNA is proportional
to E0, the first term in Eq. 4 can thus be explained by the
fluctuation in A. Furthermore, �A, the SD of A, can be estimated:
�A � 	�A2�1/2 � (1.9 � 10�3)1/2A� , where A� is the mean ampli-
fication rate. Assuming a typical value of A� around 100 (5), we
have �A � 4.4.

For the second term in Eq. 4, �Eprep is only proportional to the
square root of E0, which is thus indicative of a Poisson-like noise.
Such Poisson-like noise in the sample preparation may arise
naturally from the probabilistic nature of the amplification
process (IVT).

The accuracy of the sample preparation process inevitably
depends on human factors, whose influence is difficult to
estimate. Our result here can be best viewed as an upper limit for
the noise caused by the intrinsic chemical processes involved in
the sample preparation.

Fig. 3. The noise distribution functions at different values of mean expres-
sion values: �0 � 2,3,4,5,6,7,8,9 (a) before and (b) after rescaling by the SD
�2(�0), which is shown in c. Only the positive region of �� � 0 is shown in a and
b for symmetry reasons. The rescaled distribution functions collapse onto a
single curve well fitted by �(�
) � 1�2exp(�x2�0.5 � 0.6
x
), plotted as the thick
line shown in b.

Fig. 4. The dependence of the noise strength �1,2
2 , on the expected values of

the gene expression for replicates in groups G1 and G2. (Inset) The variance of
the sample preparation noise �prep

2 � �2
2 � �1

2 is shown. �prep has very weak
dependence on the expression value for the large expression levels �0 � 4.0
and can be fitted by 1.9 � 10�3 � 0.12 � e��0 for �0 � 2.
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Hybridization Noise. Most of the total measurement error comes
from the hybridization noise, which depends strongly on the
expression level (see Fig. 4). For expression level �0 � 2, the
hybridization noise �hyb

2 decreases rapidly with increasing ex-
pression level as shown in Fig. 5, where ln(�hyb

2 ) is plotted versus
�0. Empirically, �hyb

2 can be fitted by:

�hyb
2 ��0� � �e���0, [5]

with � � 4.6 � 0.2 and � � 1.1 � 0.1 for the region 3.2 � �0 �
6.2, before saturating to a constant (3.2 � 10�3).

Also in Fig. 5, we have included the hybridization noise
calculated by using expression values obtained from MAS ver-
sion 4.0 [for 4.0 and earlier versions of MAS, �ij is defined as:
�ij � ln(max(Eij, Ec)), where we choose a small Ec � 0.1 as a
cutoff in avoiding negative expression values]. It is reassuring to
see the results from the old and new versions of the software are
consistent in the high-expression value region. The different
behavior at low expression values reflects the major difference
between versions 4.0 and 5.0 in dealing with negative differences
between perfect match and mismatch probe pairs. This differ-
ence may be irrelevant because most of the genes with low
expression values �0 � 3 are considered to be absent from both
versions of the software (see Fig. 6b).

To examine the robustness of the hybridization noise charac-
teristics, we have also calculated the hybridization noise strength
(�
hyb)2 for nine pairs of replicate experiments (6), which were
performed with a different type of Affymetrix GeneChip array
(HuGeneFL), with a different type of cell (human fibroblast
cells) and in a different laboratory. The results are shown in Fig.
5 along with our data. It is remarkable that the exponentially
decaying part of the hybridization noise seems universal regard-
less of the type of genechip and the sample being used. Notice
also the agreement of the noise behavior in the full �0 range
between our data generated with MAS 4.0 and the indepen-
dently generated data of ref. 6 with MAS 3.1, which uses the
same analysis algorithm as MAS 4.0. This observation indicates
that the noise as characterized in the present analysis seems to

show a degree of universality; more work is needed in confirming
this behavior.

Noise in the hybridization signal can come from fluctuations
in both the target molecule binding and cross-hybridization
(nonspecific binding), which may have different behaviors. To
roughly separate between specific and nonspecific hybridization,
we use the Affymetrix ‘‘present’’ (PP) and ‘‘absent’’ (AA) calls.
In particular, we calculate the noise strengths �hyb,PP

2 and �hyb,AA
2

for only those genes whose calls are both present and both absent
for the replicate experiment pair from G1. The results are shown
in Fig. 6a. For reference, we also plot the fractions of the PP, AA,
and PA pairs for a given mean expression value �0 in Fig. 6b.
From Fig. 6a, it becomes clear that the noise characteristics are
different for �hyb,PP

2 and �hyb,AA
2 . This is most evident in the region

3 � �0 � 6, where PP pairs and AA pairs are both populated (see
Fig. 6b). Their different behavior suggests that �hyb,PP and �hyb,AA

have different origins.
For �hyb,PP

2 , we can fit the PP hybridization noise strength with

�hyb,PP
2 ��0� � 
PP 
 �PPe��PP�0, [6]

for �0 � 3.0 and with 
PP � 3.2 � 10�3 � 2.0 � 10�4, �PP �
0.75 � 0.1, and �PP � 0.93 � 0.04 as shown in Fig. 6a Inset. The
origins of the two noise terms in Eq. 6 may be understood as
follows. In general, for a gene with a present call, the final
expression readout E should be proportional to NcRNA, the
number of cRNA molecules of the gene: E � qNcRNA. However,
the proportional factor q, which depends on the hybridization
and the subsequent readout processes, can vary between differ-
ent gene chips [for example, due to differences in purity of the
probes on different gene chips (7)]. Such fluctuation in q
between different experiments can give rise to the (constant)
first term in Eq. 6. The second term in Eq. 6, with �PP � 1,
indicates a Poisson-like noise (see earlier discussion of the
sample preparation noise). Such Poisson-like noise may arise
naturally from the probabilistic nature of the hybridization and
the subsequent readout processes.

Fig. 5. Logarithm of the hybridization noise versus the expression level for
our data obtained by different versions of Affymetrix MAS. F, Results from
MAS 5.0; ■ , results from MAS 4.0. We have also calculated the noise strength
from Lemon et al.’s replicate data (see ref. 6), which was performed with a
different type of GeneChip array (HuGeneFL), with a different type of sample
(human fibroblast cells) and by using MAS 3.1. The agreement between the
three results indicates a certain universality of the noise characteristics in the
region 3.0 � �0 � 7.0, where the variance of the noise decays exponentially
(see text).

Fig. 6. (a) The overall hybridization noise (black line) is decomposed into two
parts: the hybridization noise for genes that are labeled by MAS 5.0 as present
(�hyb,PP, solid line) or absent (�hyb,AA, dotted line). (Inset) �hyb,PP

2 is fitted by
3.2 � 10�3 � 0.75 � exp(�0.93�0). For reference, the fractions of the PP, PA,
and AA pairs in all of the replicate experiments at a given mean expression
value �0 are plotted in b.

14034 � www.pnas.org�cgi�doi�10.1073�pnas.222164199 Tu et al.
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For �hyb,AA, it cannot be fitted with any simple form that would
allow speculations about its origin. The best fit with an expo-
nential function in the region 2 � �0 � 5.0 is (not shown in Fig.
6a): �hyb,AA

2 � �AAe��AA�0 with �AA � 1.3 � 0.1 and �AA � 0.72 �
0.1. Indeed, it is not clear what the expression intensity means
when the gene is deemed absent by the Affymetrix call. Most
likely, the intensity value and its f luctuation, if meaningful at all,
are affected by cross-hybridization. The final intensity values and
their f luctuations depend very much on the way one deals with
negative differences between perfect match and mismatch probe
pairs, which occur most frequently in the absent genes. This is
consistent with our finding (data not shown) that �hyb,AA changes
significantly when we use the intensity values from MAS 4.0
instead of MAS 5.0, whereas the change in �hyb,PP between the
two versions is minimal.

USE-Fold: A Method for Uniform Significance of Expression Fold
Change. The results presented in the previous sections can be
used to design a method for determining the statistical relevance
of gene expression changes. The idea is simply that the fold
change experienced by a gene under different biological condi-
tions has to be larger than the fold change expected from the
noise. We shall use the full noise distribution function discussed
previously to evaluate the significance of the difference between
a pair of gene expressions (�1,�2) for the same gene but different
experiments. By using the fluctuation between replicate exper-
iment pairs in G2 as the null hypothesis, a gene expression-
dependent p value can be defined as:

p��1, �2��0� � �
���� � ��0

P2�����0�d��, [7]

where ��0 � 
�1 � �2
�2, �0 � (�1 � �2)�2.
For �0 � 2, we can use Eq. 2, and the p value can be expressed

simply as a function of the signal-to-noise ratio R � ��0��2(�0):
p(�1,�2
�0) � 2�R

� �(x)dx. In Fig. 7, the contour lines for
p(�1,�2
�0) � 0.05 are shown together with two lines correspond-

ing to a uniform 2-fold expression value change [
�1 � �2
 �
ln(2)]. This clearly shows that given a fixed confidence level
(p value � 0.05), a requirement of a uniform 2-fold expression
change is too stringent for the high expression level, while being
inadequate for the low expression level (�0 � 4). In fact, given
the strong expression level dependence of the noise, no signif-
icance criterion based solely on the expression fold change is
appropriate. Instead, to guarantee a fixed level of statistical
relevance p0, one can enforce a uniform (i.e., expression level
independent) lower bound on the signal-to-noise ratio R �
R0(p0).

The above discussion suggests the following method of select-
ing differently expressed genes with user-defined statistical
significance:

Y Evaluate the noise level from replicate experiments such as
those in group G2. Ideally, each laboratory should carry out its
replicate experiments to determine the noise level. If this is not
possible, the results of this article may be used with some
degree of confidence, as we have shown consistency between
two sets of replicate data produced in different laboratories
(our data and that of ref. 6, see Fig. 5).

Y After obtaining �2(�0) from the previous step, pick a signif-
icance level p0, and compute the corresponding threshold for
the signal-to-noise ratio R0 such that p0 � 2�R0

� �(x)dx, where
�(x) is the noise distribution function. Using the empirical
form of �(x) � 1�2 exp(�x2�0.5 � 0.6
x
) found in this article,
for significance level p0 � 0.05, we find the corresponding
R0 � 2.1.

Y Given two expression values E1 and E2, corresponding to the
fluorescence intensity of the same gene from different gene
chips, compute �1 � ln(E1) and �2 � ln(E2), and define �0 �
(�1 � �2)�2. The fold change � � max(E1�E2, E2�E1) is
statistically significant with a p value less or equal than p0 if the
signal-to-noise ratio ln(�)�(2�2(�0)) � R0.

To demonstrate the utility of this method, we have applied it
to discover differentially expressed genes between two develop-
mentally distinct types of B lymphocytes, a centroblast (CB) and
a naive (N) B cell (see Tables 1 and 2, Fig. 8, and additional Text,
which are published as supporting information on the PNAS web
site, www.pnas.org, for details). A total of 1,490 genes were
found to change more than 2-fold in their expression values and
have at least one present call in either of the two experiments.
However, more than 10% of these genes do not pass the
USE-Fold noise test with p0 � 0.05. For example, one gene
(GenBank accession no. AA143021) has present calls in both
experiments with expression values E1 � 48.3 and E2 � 21.7
for CB and N, respectively. Even though the fold change � �
E1�E2 � 2.23 is greater than 2, at their mean (logarithmic)
expression level of �0 � (ln(E1) � ln(E2))�2 � 3.48, the noise
level is also large, �2(�0) � 0.32 (see Fig. 4) and the signal-to-
noise ratio ln(�)�(2�2(�0)) � 1.25 is smaller than R0 � 2.1.
Therefore, this gene cannot be considered to be differentially
expressed with high confidence by just these two experiments. To
test whether or not such gene is differentially expressed between
the two types of B cell, more experiments need to be done to
average out the effect of the random experimental noise (8). This
is necessary particularly for genes with low expression, because
the relative noise is much larger at low expression levels.

All of the data used in this article and free software imple-
menting the USE-Fold method can be found at our web site
(www.research.ibm.com�FunGen�index.html).

Conclusions
In this article, we have systematically studied the experimental
noise characteristics of Affymetrix GeneChip microarray exper-
iments. By designing replicate experiments that differ from each

Fig. 7. The contour line of p value equal to 0.05. Any pair of expression values
(�1,�2) outside the shaded area represents differently expressed genes beyond
experimental noise with a p value of 0.05 or smaller. The two dotted lines
represent 2-fold expression changes.
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other at different stages of the experiments, we are able to
decompose the total experimental noise into two parts: the
sample preparation (prehybridization) noise and the hybridiza-
tion (including the subsequent readout processes) noise. We
have characterized these two sources of noise quantitatively, and
in particular, their dependence on the gene expression level
itself. For the sample preparation noise, we find that it is dominated
by an expression-independent constant and is in general much
smaller than the hybridization noise. For the hybridization noise,
except for a small constant component, the noise strength is found
to depend strongly on the expression level. Specifically, for the
genes labeled by the Affymetrix call as present, the dependence of
the hybridization noise strength on the expression indicates a
Poisson-like noise, in accordance with the probabilistic nature of
the hybridization process; for the absent genes, however, the
hybridization noise characteristics does not have a simple explana-

tion, because the noise and even the gene expression readout itself
are affected by cross-hybridization.

Overall, the importance of this work is 2-fold. First, our study
provides a quantitative measure of the experimental noise, which
served us as a base for designing a simple method for deter-
mining statistical meaningful biological information from gene
expression microarray data. Second, our study provides insight
into the sources of the noise by decomposing the noise according
to the individual steps of the genechip experiment. The insights
gained from this study may help to further reduce the errors
arising in DNA microarray experiments.
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