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CELL BIOLOGY
Correction for “Cancer cell-derived microvesicles induce trans-
formation by transferring tissue transglutaminase and fibronectin
to recipient cells,” by Marc A. Antonyak, Bo Li, Lindsey K.
Boroughs, Jared L. Johnson, Joseph E. Druso, Kirsten L. Bryant,
David A. Holowka, and Richard A. Cerione, which appeared
in issue 12, March 22, 2011, of Proc Natl Acad Sci USA (108:
4852–4857; first published February 28, 2011; 10.1073/pnas.
1017667108).
The authors note the following statement should be added to

the Acknowledgments: “We gratefully acknowledge funding
support from the National Institutes of Health (NIH) and Susan
G. Komen for the Cure.”

www.pnas.org/cgi/doi/10.1073/pnas.1114824108

RETRACTION

MEDICAL SCIENCES
Retraction for “A genomic approach to colon cancer risk strat-
ification yields biologic insights into therapeutic opportunities,”
by Katherine S. Garman, Chaitanya R. Acharya, Elena Edelman,
Marian Grade, Jochen Gaedcke, Shivani Sud, William Barry,
Anna Mae Diehl, Dawn Provenzale, Geoffrey S. Ginsburg, B.
Michael Ghadimi, Thomas Ried, Joseph R. Nevins, Sayan Mu-
kherjee, David Hsu, and Anil Potti, which appeared in issue 49,
December 9, 2008, of Proc Natl Acad Sci USA (105:19432–19437;
first published December 2, 2008; 10.1073/pnas.0806674105).
The authors wish to note the following: “We wish to retract

this article because we have been unable to reproduce certain
key experiments described in the paper regarding validation and
use of the colon cancer prognostic signature. This includes the
validation performed with dataset E-MEXP-1224, as reported in
Fig. 2A, as well as the generation of prognostic scores for colon
cancer cell lines, as reported in Fig. 4. Because these results are
fundamental to the conclusions of the paper, the authors for-
mally retract the paper. We deeply regret the impact of this
action on the work of other investigators.”
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Fig. 5. “Peri-stimulus time histogram of dopamine neuron activity during
a cued and probabilistically rewarded task” (38). [Reproduced with permis-
sion from ref. 38 (Copyright 2003, American Association for the Advance-
ment of Science).]
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A number of recent advances have been achieved in the study of
midbrain dopaminergic neurons. Understanding these advances
and how they relate to one another requires a deep understand-
ing of the computational models that serve as an explanatory
framework and guide ongoing experimental inquiry. This intertwin-
ing of theory and experiment now suggests very clearly that the
phasic activity of the midbrain dopamine neurons provides a global
mechanism for synaptic modification. These synaptic modifications,
in turn, provide the mechanistic underpinning for a specific class of
reinforcement learning mechanisms that now seem to underlie much
of human and animal behavior. This review describes both the critical
empirical findings that are at the root of this conclusion and the
fantastic theoretical advances fromwhich this conclusion is drawn.

The theory and data available today indicate that the phasic
activity of midbrain dopamine neurons encodes a reward

prediction error used to guide learning throughout the frontal
cortex and the basal ganglia. Activity in these dopaminergic
neurons is now believed to signal that a subject’s estimate of the
value of current and future events is in error and indicate the
magnitude of this error. This is a kind of combined signal that
most scholars active in dopamine studies believe adjusts synaptic
strengths in a quantitative manner until the subject’s estimate of
the value of current and future events is accurately encoded in
the frontal cortex and basal ganglia. Although some confusion
remains within the larger neuroscience community, very little
data exist that are incompatible with this hypothesis. This review
provides a brief overview of the explanatory synergy between
behavioral, anatomical, physiological, and biophysical data that
has been forged by recent computational advances. For a more
detailed treatment of this hypothesis, refer to Niv and Montague
(1) or Dayan and Abbot (2).

Features of Midbrain Dopamine Neurons
Three groups of dopamine secreting neurons send axons along
long-distance trajectories that influence brain activity in many
areas (3): the A8 and A10 groups of the ventral tegmental area
(VTA) and the A9 group of the substantia nigra pars compacta
(SNc). Two remarkable features of these neurons noted at the
time of their discovery were their very large cell bodies and very
long and complicated axonal arbors that include terminals spe-
cialized to release transmitter into the extracellular space, en
passant synapses, through which dopamine achieves an extremely
broad anatomical distribution (4). As Cajal (5) first pointed out,
the length and complexity of axonal arbors are often tightly
correlated with cell body size; large cell bodies are required to
support large terminal fields, and dopaminergic cell bodies are
about as large as they can be. The midbrain dopaminergic sys-
tem, thus, achieves the largest possible distribution of its signal
with the minimal possible number of neurons.
The A9 cluster connects to the caudate and putamen, and the

A8 and A10 axons make contact with the ventral striatum and the
fronto-cortical regions beyond (6, 7). There does, however, seem
to be some intermixing of the three cell groups (8–10). Classic
studies of these cells under conditions ranging from slice prep-
arations to awake behaving primates, however, stress homoge-
neity in response patterns across these groups. Although knowing
that one is actually recording from a dopamine neuron may be
difficult in chronic studies (11), all cells that look like dopamine
neurons in the core of the VTA and SNc seem to respond in the
same way. Even the structure of the axons of these neurons

supports the notion that activity is homogenous across this
population of giant cells. Axons of adjacent neurons are elec-
trically coupled to one another in this system (12, 13). Modeling
studies suggest that this coupling makes it more difficult for in-
dividual neurons to fire alone, enforcing highly synchronous and
thus, tightly correlated firing across the population (14).
A final note is that these neurons generate atypically long-

duration action potentials, as long as 2–3 ms. This is relevant,
because it places a very low limit on the maximal firing rates that
these neurons can produce (15).
What emerges from these many studies is the idea that the do-

pamine neurons are structurally well-suited to serve as a specialized
low-bandwidth channel for broadcasting the same information to
large territories in the basal ganglia and frontal cortex. The large
size of the cell bodies, the fact that the cells are electrically coupled,
and the fact that they fire at low rates and distribute dopamine
homogenously throughout a huge innervation territory—all these
unusual things mean that they cannot say much to the rest of the
brain but what they say must be widely heard. It should also be
noted, however, that specializations at the site of release may well
serve to filter this common message in ways that tailor it for dif-
ferent classes of recipients. Zhang et al. (16) have recently shown
differences between the time courses of dopamine levels in the
dorsal and ventral striata that likely reflect functional special-
izations for release and reuptake between these areas.

Dopaminergic Targets: Frontal Cortex and Basal Ganglia
It is also important to recognize that the dopamine neurons lie
embedded in a large and well-described circuit. At the level of the
cortex, the dopamine neurons send whatever signal they carry
throughout territories anterior to the central sulcus and send little
or no information to parietal, temporal, and occipital cortices (6).
The outputs of the dopamine-innervated frontal cortices, how-
ever, also share another commonality; many of the major long-
distance outputs of the frontal cortex pass in a topographic
manner to the two main input nuclei of the basal ganglia complex,
the caudate and the putamen (17). Both areas also receive dense
innervation from the midbrain dopaminergic neurons.
Structurally, the caudate and putamen (and the ventral-most

parts of the putamen, known as the ventral striatum) are largely
a single nucleus separated during development by the incursion of
the fibers of the corona radiata (2, 6, 18) that project principally to
two output nuclei, the globus pallidus and the substantia nigra
pars reticulata. These nuclei then, in turn, provide two basic
outputs. The first and largest of these outputs returns information
to the frontal cortex through a thalamic relay. Interestingly, this
relay back to the cortex maintains a powerful topographic sorting
(19, 20). The medial and posterior parts of the cortex that are
concerned with planning skeletomuscular movements send their
outputs to a specific subarea of the putamen, which sends signals
back to this same area of the cortex through the globus pallidus
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and the ventrolateral thalamus. Together, these connections form
a set of long feedback loops that seems to be serially intercon-
nected (9) and ultimately, generates behavioral output through
the skeletomuscular and eye-movement control pathways of the
massive frontal-basal ganglia system.
The second principal class of output from the basal ganglia

targets the midbrain dopamine neurons themselves and also
forms a feedback loop. These outputs pass to the dendrites of
the dopamine cells, where they combine with inputs from the
brainstem that likely carry signals about rewards being currently
consumed (21). In this way, the broadly distributed dopamine
signals sent to the cortex and the basal ganglia likely reflect some
combination of outputs from the cortex and places such as the
tongue. The combined signals are then, of course, broadcast
by the dopamine neurons throughout the basal ganglia and the
frontal cortex.

Theory of Reinforcement Learning
From Pavlov to Rescorla and Wagner.Understanding the functional
role of dopamine neurons, however, requires more than a knowl-
edge of brain circuitry; it also requires an understanding of the
classes of computational algorithms in which dopamine neurons
seem to participate. Pavlov (22) observed, in his famous experi-
ment on the salivating dog, that if one rings a bell and follows that
bell with food, dogs become conditioned to salivate after the bell is
rung. This process, where an unconditioned response comes to be
elicited by a conditioned stimulus, is one of the core empirical
regularities around which psychological theories of learning have
been built. Pavlov (22) hypothesized that this behavioral regularity
emerges because a preexisting anatomical connection between the
sight of food and activation of the salivary glands comes to be
connected to bell-detecting neurons by experience.
This very general idea was first mathematically formalized

when Bush and Mosteller (23, 24) proposed that the probability
of Pavlov’s (22) dog expressing the salivary response on se-
quential trials could be computed through an iterative equation
where (Eq. 1)

Anext� trial ¼ Alast� trial þ αðRcurrent� trial −Alast� trialÞ: [1]

In this equation, Anext_trial is the probability that the salivation will
occur on the next trial (or more formally, the associative strength
of the connection between the bell and salivation). To compute
Anext_trial, one begins with the value of A on the previous trial and
adds to it a correction based on the animal’s experience during
the most recent trial. This correction, or error term, is the dif-
ference between what the animal actually experienced (in this
case, the reward of the meat powder expressed as Rcurrent_trial)
and what he expected (simply, what A was on the previous trial).
The difference between what was obtained and what was
expected is multiplied by α, a number ranging from 0 to 1, which
is known as the learning rate. When α = 1, A is always imme-
diately updated so that it equals R from the last trial. When α =
0.5, only one-half of the error is corrected, and the value of A
converges in half steps to R. When the value of α is small, around
0.1, then A is only very slowly incremented to the value of R.
What the Bush and Mosteller (23, 24) equation does is com-

pute an average of previous rewards across previous trials. In this
average, the most recent rewards have the greatest impact,
whereas rewards far in the past have only a weak impact. If, to
take a concrete example, α = 0.5, then the equation takes the
most recent reward, uses it to compute the error term, and mul-
tiplies that term by 0.5. One-half of the new value of A is, thus,
constructed from this most recent observation. That means that
the sum of all previous error terms (those from all trials in the
past) has to count for the other one-half of the estimate. If one
looks at that older one-half of the estimate, one-half of that one-
half comes from what was observed one trial ago (thus, 0.25 of the
total estimate) and one-half (0.25 of the estimate) comes from the
sum of all trials before that one. The iterative equation reflects
a weighted sum of previous rewards. When the learning rate (α) is
0.5, the weighting rule effectively being carried out is (Eq. 2)

Anow ¼ 0:5 Rnow þ 0:25 Rt− 1 þ 0:125 Rt− 2 þ 0:0625 Rt− 3 þ . . . ;

[2]

an exponential series, the rate at which the weight declines being
controlled by α.
When α is high, the exponential function declines rapidly and

puts all of the weight on the most recent experiences of the
animal. When α is low, it declines slowly and averages together
many observations, which is shown in Fig. 1.
The Bush and Mosteller (23, 24) equation was critically im-

portant, because it was the first use of this kind of iterative error-
based rule for reinforcement learning; additionally, it forms the
basis of all modern approaches to this problem. This is a fact often
obscured by what is known as the Rescorla–Wagner model of
classical conditioning (25). The Rescorla–Wagner model was an
important extension of the Bush and Mosteller approach (23, 24)
to the study of what happens to associative strength when two
cues predict the same event. Their findings were so influential that
the basic Bush and Mosteller rule is now often mistakenly at-
tributed to Rescorla and Wagner by neurobiologists.

Learning Value Instead of Associations. The next important point to
make is that these early psychological theories were about as-
sociative strengths between classically conditioned stimuli and
conditioned automatic responses. These models were about
learning but not about concepts like value and choice that figure
prominently in modern discussions of the function of dopamine.
In the worlds of dynamic programming, computer science, and
economics, however, these basic equations were easily extended
to include a more explicit notion of value. Consider an animal
trying to learn the value of pressing a lever that yields four pellets
of food with a probability of 0.5. Returning to the Bush and
Mosteller (23, 24) (or Rescorla–Wagner) (25) equation (Eq. 3),

Anext�trial ¼ Alast� trial þ αðNumber�of�Pellets current� trial −Alast� trialÞ:
[3]

Because, in one-half of all trials, the animal is rewarded and in
one-half, he is not and because all rewards have a value of four,
we know exactly what this equation will do. If α has a value of
one, A will bounce up and down between zero and four; if α is
infinitely small, A will converge to two. That is striking, because
two is the long-run average, or expected, value of pressing the
lever. Therefore, in an environment that does not change, when
α is small, this equation converges to the expected value of the
action (Eq. 4):

EVnext� trial ¼ EVlast�trial

þ αðNumber�of�Pellets current� trial −EVlast� trialÞ: [4]
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Fig. 1. “Weights determining the effects of previous rewards on current
associative strength effectively decline as an exponential function of time”
(65). [Reproduced with permission from Oxford University Press from ref. 65
(Copyright 2010, Paul W. Glimcher).]
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Today, the Bush and Mosteller (23, 24) equation forms the core
of how most people think about learning values. The equation
provides a way for us to learn expected values. If we face a stable
environment and have lots of time, we can even show that this
equation is guaranteed to converge to expected value (26).

Sutton and Barto: Temporal Difference Model. The story of re-
inforcement learning described up to this point is a story largely
from psychology and mostly focused on associative learning.
That story changed abruptly in the 1990s when computer scien-
tists Sutton and Barto (26) began to think seriously about these
preexisting theories and noticed two key problems with them:

i) These theories all treated time as passing in unitary fixed
epochs usually called trials. In Bush and Mosteller (23, 24),
trials pass one after another, and updates to the values
of actions occur only between trials. In the real world,
time is more continuous. Different events in a trial might
mean different things or might indicate different things
about value.

ii) The second key problem was that these theories dealt in
only a rudimentary way with how to link sequential cues
(for example, a tone followed by a bell) with a later event of
positive or negative value. The theories were good at learn-
ing that a tone or a lever predicted a reward but not so
good at learning that a light that perfectly predicted the
appearance of a lever meant that the later appearance of
the lever told you nothing new.

To address these issues, Sutton and Barto (26) developed what
has come to be known as temporal difference (TD) learning.
That model has been presented in detail in elsewhere (26). Here,
we review the most important advances that they achieved that
are critical for understanding dopamine.
Sutton and Barto (26) began by arguing that, in essence, the

Bush and Mosteller (23, 24) approach stated the problem that
learning systems were trying to solve incorrectly. The Bush and
Mosteller (23, 24) equation learns the values of previous events.
Sutton and Barto (26) argued that the goal of a learning system
should instead be to predict the value of future events. Of course,
predictions have to be based on previous experience, and there-
fore, these two ideas are closely related; however, TD learning
was designed with a clear goal in mind: predict the value of
the future.
That is an important distinction, because it changes how one

has to think about the reward prediction error at the heart of
these reinforcement learning models. In Bush and Mosteller (23,
24) class models, reward prediction error is the difference be-
tween a weighted average of past rewards and the reward that
has just been experienced. When those are the same, there is no
error, and the system does not learn. Sutton and Barto (26), by
contrast, argued that the reward prediction error term should be
viewed as the difference between one’s rational expectations of
all future rewards and any information (be it an actual reward
or a signal that a reward is coming up) that leads to a revision of
expectations. If, for example, we predict that we will receive one
reward every 1 min for the next 10 min and a visual cue indicates
that, instead of these 10 rewards, we will receive one reward
every 1 min for 11 min, then a prediction error exists when the
visual cue arrives, not 11 min later when the final (and at that
point, fully expected) reward actually arrives. This is a key
difference between TD class and Bush and Mosteller (23, 24)
class models.
To accomplish the goal of building a theory that both could

deal with a more continuous notion of time and could build
a rational (or near-rational) expectation of future rewards, Sut-
ton and Barto (26) switched away from simple trial-based rep-
resentations of time to a representation of time as a series of
discrete moments extending from now into the infinite future.
They then imagined learning as a process that occurred not just
at the end of each trial but at each of these discrete moments.
To understand how they did this, consider a simple version of

TD learning in which each trial can be thought of as made up of

20 moments. What the TD model is attempting to accomplish is
to build a prediction about the rewards that can be expected in
each of those 20 moments. The sum of those predictions is our
total expectation of reward. We can represent this 20-moment
expectation as a set of 20 learned values, one for each of the 20
moments. This is the first critical difference between TD class
and Bush and Mosteller (23, 24) class models. The second dif-
ference lies in how these 20 predictions are generated. In TD,
the prediction at each moment indicates not only the reward that
is expected at that moment but also the sum of (discounted)
rewards available in each of the subsequent moments.
To understand this critical point, consider the value estimate,

V1, that is attached to the first moment in the 20-moment-long
trial. That variable needs to encode the value of any rewards
expected at that moment, the value of any reward expected at the
next moment decremented by the discount factor, the value of
the next moment further decremented by the discount factor,
and so on. Formally, that value function at time tick number one
is (Eq. 5)

V1 ¼ r1 þ γ1rtþ1 þ γ2rtþ2 þ γ3rtþ3 þ γ4rtþ4 þ . . .þ γ19rtþ19; [5]

where γ, the discount parameter, captures the fact that each of us
prefers (derives more utility from) sooner rather than later
rewards; the size of γ depends on the individual and the envi-
ronmental context. Because this is a reinforcement learning
system, it also automatically takes probability into account as it
builds these estimates of r at each time tick. This means that the r
values shown here are really expected rewards or average
rewards observed at that time tick. Two kinds of events can, thus,
lead to a positive prediction error: the receipt of an unexpected
reward or the receipt of information that allows one to predict
a later (and previously unexpected) reward.
To make this important feature clear, consider a situation in

which an animal sits for 20 moments, and at any unpredictable
moment, a reward might be delivered with a probability of 0.01.
Whenever a reward is delivered, it is almost completely un-
predictable, which leads to a large prediction error at the mo-
ment that the reward is delivered. This necessarily leads to an
increment in the value of that moment. On subsequent trials,
however, it is usually the case that no reward is received (because
the probability is so low), and thus, on subsequent trials, the
value of that moment is repeatedly decremented. If learning
rates are low, the result of this process of increment and dec-
rement is that the value of that moment will fluctuate close to
zero, and we will observe a large reward prediction error signal
after each unpredicted reward. Of course this is, under these
conditions, true of all of the 20 moments in this imaginary trial.
Next, consider what happens when we present a tone at any of

the first 10 moments that is followed 10 moments later by a re-
ward. The first time that this happens, the tone conveys no in-
formation about future reward, no reward is expected, and
therefore, we have no prediction error to drive learning. At the
time of the reward, in contrast, a prediction error occurs that
drives learning in that moment. The goal of TD, however, is to
reach a point at which the reward delivered 10 moments after the
tone is unsurprising. The goal of the system is to produce no
prediction error when the reward is delivered. Why is the later
reward unsurprising? It is unsurprising because of the tone.
Therefore, the goal of TD is to shift the prediction error from
the reward to the tone.
TD accomplishes this goal by attributing each obtained reward

not just to the value function for the current moment in time but
also to a few of the preceding moments in time (exactly how
many is a free parameter of the model). In this way, gradually
over time, the unexpected increment in value associated with the
reward effectively propagates backward in time to the tone. It
stops there simply because there is nothing before the tone that
predicts the future reward. If there had been a light fixed before
that tone in time, then the prediction would have propagated
backward to that earlier light. In exactly this way, TD uses pat-
terns of stimuli and experienced rewards to build an expectation
about future rewards.

Glimcher PNAS Early Edition | 3 of 8



Theory and Physiology of Dopamine
With a basic knowledge of both the anatomy of dopamine and
the theory of reinforcement learning, consider the following
classic experiment by Schultz et al. (27). A thirsty monkey is
seated before two levers. The monkey has been trained to per-
form a simple instructed choice task. After the illumination of
a centrally located start cue, the monkey will receive an apple
juice reward if he reaches out and presses the left but not the
right lever. While the animal is performing this task repeatedly,
Schultz et al. (27) record the activity of midbrain dopamine
neurons. Interestingly, during the early phases of this process,
the monkeys behave somewhat erratically, and the neurons are
silent when the start cue is presented but respond strongly
whenever the monkey receives a juice reward. As the monkey
continues to perform the task, however, both the behavior and
the activity of the neurons change systematically. The monkey
comes to focus all of his lever pressing on the lever that yields
a reward, and as this happens, the response of the neurons to the
juice reward dies out. This is shown in Fig. 2.
At the same time, however, the neurons begin to respond

whenever the start cue is illuminated. When Schultz et al. (27)
first observed these responses, they hypothesized that “dopamine
neurons are involved with transient changes of impulse activity in
basic attentional and motivational processes underlying learning
and cognitive behavior” (27).
Shortly after this report had been published, Montague et al.

(28, 29) had begun to examine the activity of octopamine neurons
in honey bees engaged in learning. They had hypothesized that
the activity of these dopamine-related neurons in these insects
encoded a reward prediction error of some kind (28, 29). When
they became aware of the results of Schultz et al. (27), they re-
alized that it was not simply the reward prediction error (RPE)
defined by Bush and Mosteller (23, 24) class models, but it was
exactly the RPE signal predicted by a TD class model. Recall that
the TD model generates an RPE whenever the subject’s expected
reward changes. For a TD class model, this means that, after an
unpredictable visual cue comes to predict a reward, it is the un-
expected visual cue that tells you that the world is better than you
expected. The key insight here is that the early burst of action
potentials after the visual cue is what suggested to Montague et al.
(28, 29) that Schultz et al. (27) were looking at a TD class system.
Subsequently, these two groups collaborated (26) to examine

the activity of primate midbrain dopamine neurons during
a conditioning task of exactly the kind that Pavlov (22) had
originally studied. In that experiment, thirsty monkeys sat quietly
under one of two conditions. In the first condition, the monkeys
received, at unpredictable times, a squirt of water into their-
mouths. They found that, under these conditions, the neurons
responded to the juice with a burst of action potentials imme-
diately after any unpredicted water was delivered. In the second
condition, the same monkey sat while a visual stimulus was de-
livered followed by a squirt of juice. The first time that this
happened to the monkey, the neurons responded as before: they
generated a burst of action potentials after the juice delivery but
were silent after the preceding visual stimulus. With repetition,
however, two things happened. First, the magnitude of the re-
sponse to the water declined until, after dozens of trials, the
water came to evoke no response in the neurons. Second and
with exactly the same time course, the dopamine neurons began
responding to the visual stimulus. As the response to the reward
itself diminished, the response to the visual stimulus grew. What
they had observed were two classes of responses, one to the re-
ward and one to the tone, but both were responses predicted by
the TD models that Montague et al. (28, 29) had been exploring.

Two Dopamine Responses and One Theory. This is a point about
which there has beenmuch confusion, and therefore, we pause for
a moment to clarify this important issue. Many scientists who are
familiar only with Bush and Mosteller (23, 24) class models (like
the Rescorla–Wagner model) (25) have looked at these data
(or others like them) and been struck by these two different re-
sponses—one at the reward delivery, which happens only early in
the session, and a second at the visual cue, which happens only

late in the session. The Bush and Mosteller (23, 24) algorithm
predicts only the responses synchronized to the reward itself, and
therefore, these scholars often conclude that dopamine neurons
are doing two different things, only one of which is predicted by
theory. If, however, one considers the TD class of models (which
was defined more than a decade before these neurons were
studied), then this statement is erroneous. The insight of Sutton
and Barto (31) in the early 1980s was that reinforcement learning
systems should use the reward prediction error signal to drive
learning whenever something changes expectations about up-
coming rewards. After a monkey has learned that a tone indicates
a reward is forthcoming, then hearing the tone at an unexpected
time is as much a positive reward prediction error as is an un-
expected reward itself. The point here is that the early and late
bursts observed in the Schultz et al. (27, 30) experiment described
above are really the same thing in TD class models. This means
that there is no need to posit that dopamine neurons are doing
two things during these trials: they seem to be just encoding re-
ward prediction errors in a way well-predicted by theory.

Negative Reward Prediction Errors. In the same paper mentioned
above, Schultz et al. (30) also examined what happens when an
expected reward is omitted and the animal experiences a nega-
tive prediction error. To examine this, monkeys were first trained
to anticipate a reward after a visual cue as described above and
then, on rare trials, they simply omitted the water reward at the
end of the trial. Under these conditions, Schultz et al. (30) found
that the neurons responded to the omitted reward with a decre-
ment in their firing rates from baseline levels (Fig. 3).
Montague et al. (28, 29) realized that this makes sense from the

point of view of a TD class—and in this case, a Bush and Mosteller
(23, 24) class—reward prediction error. In this case, an unexpected
visual cue predicted a reward. The neurons produced a burst of
action potentials in response to this prediction error. Then, the
predicted reward was omitted. This yields a negative prediction
error, and indeed, the neurons respond after the omitted reward
with a decrease in firing rates. One interesting feature of this
neuronal response, however, is that the neurons do not respond
with much of a decrease. The presentation of an unexpected re-
ward may increase firing rates to 20 or 30 Hz from their 3- to 5-Hz
baseline. Omitting the same reward briefly decreases firing rates
to 0 Hz, but this is a decrease of only 3–5 Hz in total rate.
If one were to assume that firing rates above and below

baseline were linearly related to the reward prediction error in
TD class models, then one would have to conclude that primates
should be less influenced in their valuations by negative pre-
diction errors than by positive prediction errors, but we know
that primates are much more sensitive to losses below expecta-
tion than to gains above expectation (32–35). Thus, the finding of
Schultz et al. (27, 30) that positive prediction errors shift dopa-
mine firing rates more than negative prediction errors suggests

Before Training After Training

Reward

Reward

Reward

After Training

Start Cue

Fig. 2. “Raster plot of dopamine
neuron activity. Upper panel
shows response of dopamine
neuron to reward before and af-
ter training. Lower panel shows
response of dopamine neuron
to start cue after training” (26).
[Reproducedwithpermissionfrom
ref. 26 (Copyright 1993, Society
for Neuroscience).]
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either that the relationship between this firing rate and actual
learning is strongly nonlinear about the zero point or that do-
pamine codes positive and negative prediction errors in tandem
with a second system specialized for the negative component.
This latter possibility was first raised by Daw et al. (36), who
specifically proposed that two systems might work together to
encode prediction errors, one for coding positive errors and one
for coding negative errors.

TD Models and Dopamine Firing Rates. The TD class models,
however, predict much more than simply that some neurons
must respond positively to positive prediction errors and nega-
tively to negative prediction errors. These iterative computations
also tell us about how these neurons must combine recent
rewards in their reward prediction. Saying a system recursively
estimates value by computing (Eq. 6)

EVnext� trial ¼ EVlast� trial
þ αðNumber�of�Pellets current�trial −EVlast� trialÞ [6]

is mathematically equivalent to saying that the computation of
value averages recent rewards using an exponential weighting
function of (Eq. 7)

EVnow ¼ α1Pelletsnow þ α2Pelletst− 1 þ α3Pelletst− 2

þ α4Pelletst− 3 þ . . . ; [7]

where α, the learning rate, is a number between one and zero. If,
for example, α has a value of 0.5, then (Eq. 8)

EVnow ¼ 0:5 Pelletsnow þ 0:25 Pelletst− 1 þ 0:125 Pelletst− 2
þ 0:0625 Pelletst− 3 þ . . . : [8]

If the dopamine neurons really do encode an RPE, they encode
the difference between expected and obtained rewards. In a
simple conditioning or choice task, that means that they encode
something like (Eq. 9)

RPE ¼ Robtained − ½0:5 Pelletsnow þ 0:25 Pelletst− 1
þ 0:125 Pelletst− 2 þ 0:0625 Pelletst− 3 þ . . . �: [9]

The TD model presented by Sutton and Barto (26) tells us little
about the value α should take under any specific set of conditions
(here, it is arbitrarily set to 0.5), but we do know that the decay
rate for the weights in the bracketed part of the equation above
should decline exponentially for any stationary environment. We
also know something else: when the prediction equals the ob-
tained reward, then the prediction error should equal zero. That
means that the actual value of Robtained should be exactly equal to
the sum of the exponentially declining weights in the bracketed
part of the equation.

Bayer and Glimcher (37) tested these predictions by recording
from dopamine neurons while monkeys engaged in a learning
and choice task. In their experiment, monkeys had to precisely
time when in a trial they would make a response for a reward.
One particular response time would yield the most reward but
that best time shifted unexpectedly (with a roughly flat hazard
function) across large blocks of trials. On each trial, the monkey
could cumulate information from previous trials to make a re-
ward prediction. Then, the monkey made his movement and
received his reward. The difference between these two should
have been the reward prediction error and thus, should be cor-
related with dopamine firing rates.
To test that prediction, Bayer and Glimcher (37) performed

a linear regression between the history of rewards given to the
monkey and the firing rates of dopamine neurons. The linear
regression determines the weighting function that combines in-
formation about these previous rewards in a way that best predicts
dopamine firing rates. If dopamine neurons are an iteratively
computed reward prediction error system, then increasing reward
on the current trial should increase firing rates. Increasing re-
wards on trials before that should decrease firing rates and should
do so with an exponentially declining weight. Finally, the re-
gression should indicate that the sum of old weights should
be equal (and opposite in sign) to the weight attached to the
current reward. In fact, this is exactly what Bayer and Glimcher
(37) found (Fig. 4).
The dopamine firing rates could bewell-described as computing

an exponentially weighted sum of previous rewards and subtract-
ing from that value the magnitude of the most recent reward.
Furthermore, they found, as predicted, that the integral of the
declining exponential weights was equal to theweight attributed to
the most recent reward. It is important to note that this was not
required by the regression in any way. Any possible weighting
function could have come out of this analysis, but the observed
weighting function was exactly that predicted by the TD model.
A second observation that Bayer and Glimcher (37) made,

however, was that the weighting functions for positive and neg-
ative prediction errors (as opposed to rewards) were quite dif-
ferent. Comparatively speaking, the dopamine neurons seemed
fairly insensitive to negative prediction errors. Although Bayer
et al. (15) later showed that, with a sufficiently complex non-
linearity, it was possible to extract positive and negative reward
prediction errors from dopamine firing rates, their data raise
again the possibility that negative prediction errors might well be
coded in tandem with another unidentified system.

Dopamine Neurons and Probability of Reward. Following on these
observations, Schultz et al. (27, 30) observed yet another in-
teresting feature of the dopamine neurons well-described by the
TD model. In a widely read paper, Fiorillo et al. (38) showed
that dopamine neurons in classical conditioning tasks seem to
show a ramp of activity between cue and reward whenever the
rewards are delivered probabilistically, as shown in Fig. 5.
Recall that TD class models essentially propagate responsibility

for rewards backward in time. This is how responses to unexpected
rewards move through time and attach to earlier stimuli that
predict those later rewards. Of course, the theory predicts that
both negative and positive prediction errors should propagate
backward in time in the same way.
Now, with that in mind, consider what happens when a mon-

key sees a visual cue and receives a 1-mL water reward with
a probability of 0.5 1 s after the tone. The average value of the
tone is, thus, 0.5 mL. In one-half of all trials, the monkey gets
a reward (a positive prediction error of 0.5), and in one-half of
all trials, it gets does not get a reward (a negative prediction
error of 0.5). One would imagine that these two signals would
work their way backward in trial time to the visual cue. Aver-
aging across many trials, one would expect to see these two
propagating signals cancel out each other. However, what would
happen if the dopamine neurons responded more strongly to
positive than negative prediction errors (37)? Under that set of
conditions, the TD class models would predict that average do-
paminergic activity would show the much larger positive pre-

Reward predicted
Reward occurs

Reward predicted
No reward occurs

CS

CS
–1 0 1 2s

R

(No R)

Fig. 3. “When a reward is cued
and delivered, dopamine neu-
rons respond only to the cue.
When an expected reward is
omitted after a cue the neuron
responds with a suppression of
activity as indicated by the oval”
(29). [Reproduced with permis-
sion from ref. 29 (Copyright
1997, American Association for
the Advancement of Science).]
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diction error propagating backward in time as a ramp—exactly
what Schultz et al. (27, 30) observed.
This observation of the ramp has been quite controversial and

has led to a lot of confusion. Schultz et al. (27, 30) said two things
about the ramp: that the magnitude and shape of the ramp carried
information about the history of previous rewards and that this
was a feature suggesting that the neurons encoded uncertainty in
a way not predicted by theory. The first of these observations is
unarguably true. The second is true only if we assume that positive
and negative prediction errors are coded as precise mirror images
of one another. If instead, as the Bayer and Glimcher (37) data
indicate, negative and positive prediction errors are encoded
differentially in the dopamine neurons, then the ramp is not only
predicted by existing theory, it is required. This is a point first
made in print by Niv et al. (39).

Axiomatic Approaches. How sure are we that dopamine neurons
encode a reward prediction error? It is certainly the case that the
average firing rates of dopamine neurons under a variety of
conditions conform to the predictions of the TD model, but just
as the TD class succeeded the Bush and Mosteller (23, 24) class,
we have every reason to believe that future models will improve
on the predictions of TD. Therefore, can there ever be a way to
say conclusively that the activity of dopamine neurons meets
some absolute criteria of necessity and sufficiency with regard
to reinforcement learning? To begin to answer that question,
Caplin and Dean (40) used a standard set of economic tools for
the study of dopamine. Caplin and Dean (40) asked whether
there was a compact, testable, mathematically axiomatic way to
state the current dopamine hypothesis.
After careful study, Caplin and Dean (40) were able to show

that the entire class of reward prediction error-based models
could be reduced to three compact and testable mathematical
statements called axioms—common mathematical features that
all reward prediction error-based models must include irrespec-
tive of their specific features.

i) Consistent prize ordering. When the probabilities of
obtaining specific rewards are fixed and the magnitudes
of those rewards are varied, the ordering of obtained re-
ward outcomes by neural activity (e.g., which reward pro-
duces more activity, regardless of how much more) must
be the same regardless of the environmental conditions
under which the rewards were received.

ii) Consistent lottery ordering. When rewards are fixed and
the probabilities of obtaining specific rewards are varied,
the ordering of rewards by neural activity (e.g., which re-
ward outcome produces more activity) should be the same
for all of the reward outcomes that can occur under a given
set of probabilities.

iii) No surprise equivalence. The final criterion of necessity
and sufficiency identified by Caplin and Dean (41) was
that RPE signals must respond identically to all fully pre-
dicted outcomes (whether good or bad), conditions under
which the reward prediction error is zero.

Caplin and Dean (40, 41) showed that any RPE system,
whether a Bush and Mosteller (23, 24) class or TD class model,
must meet these three axiomatic criteria. Saying that an observed
system violated one or more of these axioms, they showed, was
the same as saying that it could not, in principle, serve as a re-
ward prediction error system. Conversely, they showed that, for
any system that obeyed these three rules, neuronal activity could
without a doubt be accurately described using at least one
member of the reward prediction error model class. Thus, what
was important about the axiomatization of the class of all RPE
models by Caplin and Dean (40, 41) is that it provided a clear
way to test this entire class of hypotheses.
In a subsequent experiment, Caplin et al. (42) then performed

an empirical test of the axioms on brain activations (measured
with functional MRI) in areas receiving strong dopaminergic
inputs by constructing a set of monetary lotteries and having
human subjects play those lotteries for real money. In those
experiments, subjects either won or lost $5 on each trial, and the
probabilities of winning or losing were systematically manipu-
lated. The axioms indicate that for a reward prediction error
encoding system under these conditions, three things will occur.

i) Winning $5 must always give rise to more activity than
losing $5, regardless of the probability (from consistent
prize ordering).

ii) The more certain you are that you will win, the lower must
be the neural activation to winning, and conversely, the
more certain you are that you will lose, the higher must be
the activity to losing (from consistent lottery ordering).

iii) If you are certain of an outcome, whether it be winning
or losing, neural activity should be the same, regardless of
whether you win or lose $5 (from no surprise equivalence).

What they found was that activations in the insula violated the
first two axioms of the reward prediction error theory. This was an
unambiguous indication that the blood oxygen level-dependent
(BOLD) activity in the insula could not, in principle, serve as an
RPE signal for learning under the conditions that they studied. In
contrast, activity in the ventral striatum obeyed all three axioms and
thus, met the criteria of both necessity and sufficiency for serving as
an RPE system. Finally, activity in the medial prefrontal cortex and
the amygdala yielded an intermediate result. Activations in these
areas seemed to weakly violate one of the axioms, raising the pos-
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Fig. 4. “The linear weighting
function which best relates dopa-
mine activity to reward history”
(65). [Reproducedwith permission
from Oxford University Press from
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sibility that future theories of these areas would have to consider the
possibility that RPEs either were not present or were only a part of
the activation pattern here.
The paper by Caplin et al. (42) was important, because it was,

in a real sense, the final proof that some areas activated by do-
pamine, the ventral striatum in particular, can serve as a reward
prediction error encoder of the type postulated by TD models.
The argument that this activation only looks like an RPE signal
can now be entirely dismissed. The pattern of activity that the
ventral striatum shows is both necessary and sufficient for use in
an RPE system. That does not mean that it has to be such
a system, but it draws us closer and closer to that conclusion.

Cellular Mechanisms of Reinforcement Learning
In the 1940s and 1950s, Hebb (43) was among the first to pro-
pose that alterations of synaptic strength based local patterns of
activation might serve to explain how conditioned reflexes op-
erated at the biophysical level. Bliss and Lomo (44) succeeded in
relating these two sets of concepts when they showed long-term
potentiation (LTP) in the rabbit hippocampus. Subsequent bio-
physical studies have shown several other mechanisms for al-
tering synaptic strength that are closely related to both the
theoretical proposal of Hebb (43) and the biophysical mechanism
of Bliss and Lomo (44). Wickens (45) and Wickens and Kotter
(46) proposed the most relevant of these for our discussion,
which is often known as the three-factor rule. What Wickens (45)
and Wickens and Kotter (46) proposed was that synapses would
be strengthened whenever presynaptic and postsynaptic activities
co-occurred with dopamine, and these same synapses would be
weakened when presynaptic and postsynaptic activities occurred
in the absence of dopamine. Indeed, there is now growing un-
derstanding at the biophysical level of the many steps by which
dopamine can alter synaptic strengths (47).
Why is this important for models of reinforcement learning?

An animal experiences a large positive reward prediction error:
he just earned an unexpected reward. The TD model tells us
that, under these conditions, we want to increment the value
attributed to all actions or sensations that have just occurred.
Under these conditions, we know that the dopamine neurons
release dopamine throughout the frontocortical–basal ganglia
loops and do so in a highly homogenous manner. The three-
factor rule implies that any dopamine receptor-equipped neuron,
active because it just participated in, for example, a movement to
a lever, will have its active synapses strengthened. Thus, when-
ever a positive prediction error occurs and dopamine is released
throughout the frontal cortices and the basal ganglia, any seg-
ment of the frontocortical–basal ganglia loop that is already
active will have its synapses strengthened.
To see how this would play out in behavior, consider that neurons

of the dorsal striatum form maps of all possible movements into the
extrapersonal space. Each time that we make one of those move-
ments, the neurons associated with that movement are active for
a brief period and that activity persists after the movement is com-
plete (48, 49). If any movement is followed by a positive prediction
error, then the entire topographic map is transiently bathed in the
global prediction error signal carried by dopamine into this area.
What would this combination of events produce? It would produce
a permanent increment in synaptic strength only among those
neurons associated with recently produced movements. What would
that synapse come to encode after repeated exposure to dopamine?
It would come to encode the expected value (or perhaps, more
precisely, the expected subjective value) of the movement.
What is critical to understand here is that essentially every-

thing in this story is a preexisting observation of properties of the
nervous system. We know that neurons in the striatum are active
after movements as required of (the eligibility traces of) TD
models. We know that a blanket dopaminergic prediction error is
broadcast throughout the frontocortical–basal ganglia loops. We
know that dopamine produces LTP-like phenomena in these
areas when correlated with underlying activity. In fact, we even
know that, after conditioning, synaptically driven action potential
rates in these areas encode the subjective values of actions (48–
51). Therefore, all of these biophysical components exist, and

they exist in a configuration that could implement TD class
models of learning.
We even can begin to see how the prediction error signal coded

by the dopamine neurons could be produced. We know that
neurons in the striatum encode, in their firing rates, the learned
values of actions. We know that these neurons send outputs to the
dopaminergic nuclei—a reward prediction.We also know that the
dopaminergic neurons receive fairly direct inputs from sensory
areas that can detect and encode the magnitudes of consumed
rewards. The properties of sugar solutions encoded by the tongue,
for example, have an almost direct pathway through which these
signals can reach the dopaminergic nuclei. Given that this is true,
constructing a prediction error signal at the dopamine neurons
simply requires that excitatory and inhibitory synapses take the
difference between predicted and experienced reward in the vol-
tage of the dopamine neurons themselves or their immediate
antecedents.

Summary and Conclusion
The basic outlines of the dopamine reward prediction error
model seem remarkably well-aligned with both biological level
and behavioral data; a wide range of behavioral and physiolog-
ical phenomena seem well-described in a parsimonious way by
this hypothesis. The goal of this presentation has been to com-
municate the key features of that alignment, which has been
mediated by rigorous computational theory. It is important to
note, however, that many observations do exist that present key
challenges to the existing dopamine reward prediction error
model. Most of these challenges are reviewed in Dayan and Niv
(52).* It is also true that the reward prediction error hypothesis
has focused almost entirely on the phasic responses of the do-
pamine neurons. It is unarguably true that the tonic activity of
these neurons is also an important clinical and physiological
feature (55) that is only just beginning to receive computational
attention (56, 57).
Onemore recent challenge that deserves special mention arises

from the work of Matsumoto and Hikosaka (58), who have re-
cently documented the existence of neurons in the ventro-lateral
portion of the SNc that clearly do not encode a reward prediction
error. They hypothesize that these neurons form a second phys-
iologically distinct population of dopamine neurons that plays
some alternative functional role. Although it has not yet been
established that these neurons do use dopamine as their neuro-
transmitter (which can be difficult) (11), this observation might
suggest the existence of a second group of dopamine neurons
whose activity lies outside the boundaries of current theory.
In a similar way, Ungless et al. (59) have shown that, in anes-

thetized rodents, some dopamine neurons in the VTA respond
positively to aversive stimuli. Of course, for an animal that pre-
dicts a very aversive event, the occurrence of an only mildly
aversive event would be a positive prediction error. Although it is
hard to know what predictions the nervous system of an anes-
thetized rat might make, the observation that some dopamine
neurons respond to aversive stimuli poses another important
challenge to existing theory that requires further investigation.
Despite these challenges, the dopamine reward prediction

error has proven remarkably robust. Caplin et al. (42) have
shown axiomatically that dopamine-related signals in the ventral
striatum can, by definition, be described accurately with models
of this class. Montague et al. (29) have shown that the broad
features of dopamine activity are well-described by TD class (26)
models. More detailed analyses like those by Bayer and Glimcher
(37) have shown quantitative agreement between dopamine fir-
ing rates and key structural features of the model. Work in hu-
mans (60, 61) has shown that activity in dopaminergic target
areas is also well-accounted for by the general features of the
model in this species. Similar work in rats also reveals the exis-

*It is important to acknowledge that there are alternative views of the function of these
neurons. Berridge (53) has argued that dopamine neurons play a role closely related to
the one described here that is referred to as incentive salience. Redgrave and Gurney (54)
have argued that dopamine plays a central role in processes related to attention.
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tence of a reward prediction error-like signal in midbrain dopa-
mine neurons of that species (62). Additionally, it is also true that
many of the components of larger reinforcement learning circuits
in which the dopamine neurons are believed to be embedded
have also now been identified (48–51, 63–65). Although it is al-

ways true that existing scientific models turn out to be incorrect
at some point in the future with new data, there can be little
doubt that the quantitative and computational study of dopamine
neurons is a significant accomplishment of contemporary inte-
grative neuroscience.
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