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Small RNAs (sRNAs) are important components of posttranscriptional
regulation. Thesemolecules are prevalent in bacterial and eukaryotic
organisms, and involved in a variety of responses to environmental
stresses. The functional characterization of sRNAs is challenging and
requires highly focused and extensive experimental procedures.
Here, using a network biology approach and a compendium of gene
expression profiles, we predict functional roles and regulatory inter-
actions for sRNAs in Escherichia coli. We experimentally validate pre-
dictions for three sRNAs in our inferred network: IsrA, GlmZ, and
GcvB. Specifically, we validate a predicted role for IsrA and GlmZ in
the SOS response, andwe expand on current knowledge of the GcvB
sRNA, demonstrating its broad role in the regulation of amino acid
metabolism and transport.Wealso show, using the inferrednetwork
coupled with experiments, that GcvB and Lrp, a transcription factor,
repress each other in amutually inhibitory network. Thiswork shows
that a network-based approach can be used to identify the cellular
function of sRNAs and characterize the relationship between sRNAs
and transcription factors.
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Small noncoding RNAs (sRNAs) are ubiquitous in all king-
doms of life. These molecules range in length from a few

nucleotides to a few hundred nucleotides, and are involved in the
regulation of a wide range of physiological processes (1–3).
Bacterial sRNAs, some of which have been studied extensively
(4), have been implicated in the regulation of bacterial stress
responses, iron uptake, quorum sensing, virulence, and biofilm
formation (5–8).
The most widely studied class of bacterial sRNAs act as post-

transcriptional regulators by base-pairing to target mRNAs. This
interaction is facilitated by the Hfq protein, a bacterial Sm-like
protein with chaperone function, which acts as a general cofactor
in RNA interactions (9). Binding of an sRNA to its mRNA target
can result in changes in translational efficiency as well as tran-
script instability, a process dependent on the RNase-E–including
degradosome complex (10). To date, w80 sRNAs have been
identified in Escherichia coli, 30 of which are Hfq-dependent. A
number of these sRNAs have been well characterized, such as
RyhB, which is known to regulate iron homeostasis (8).
Small RNAs and their targets are being discovered and

identified with greater efficiency (11–15); however, the functions
of many sRNAs remain unknown. In the present study, we were
interested in exploring the possibility of developing and using
a network biology approach to elucidate sRNA functional roles.
We applied a network inference algorithm to a compendium of
E. coli microarray expression profiles to reconstruct an sRNA
regulatory network. Functional enrichment of the resulting
sRNA subnetworks confirmed known functions for some sRNAs
and identified putative functions for others. We experimentally
validated predicted functional roles for three sRNAs, and an in-
depth analysis of the inferred network led to the discovery of
a unique sRNA transcription-factor mutual inhibitory network.

Results and Discussion
Small RNA Regulatory Network Inference. We developed a compu-
tational biology approach to characterize functional roles for

sRNAs in bacteria (see Fig. S1 and SI Materials and Methods for
a more complete overview of this method). As a first step, we
used the Context Likelihood of Relatedness (CLR) algorithm
(16) to infer the sRNA regulatory network in E. coli. The CLR
algorithm is an inference approach based on mutual information
and allows for the identification of regulatory relationships be-
tween biomolecular entities. This algorithm previously has been
used to infer transcriptional regulatory networks (17) by exam-
ining the functional relationships between transcription factors
and target genes. We applied the CLR algorithm to an existing
compendium of E. coli microarrays collected under different
experimental conditions (Table S1A) to reverse engineer and
analyze the regulatory subnetworks for Hfq-dependent sRNAs.
This process allowed us to infer potential targets of each of these
sRNAs with a highly significant false-discovery rate (FDR)-cor-
rected P value (q < 0.005) (18). The inferred network (Fig. 1 and
Table S2A) consists of 459 putative direct and indirect targets
for the Hfq-dependent sRNAs, including sRNA–sRNA inter-
actions as well as a number of genes predicted to be coregulated
by two sRNAs.
A cellular regulatory scheme in which each transcription factor

regulates at least one sRNA (4) has been hypothesized. It is
therefore interesting to note that 10 of the sRNAs in the network
are predicted to interact with at least one transcription factor, al-
though directionality of regulation is not implied. Transcriptional
regulators in the network include LexA (SOS response), FlhD
(chemotaxis), and GadE, GadW, and GadX (acid stress response).
These network results indicate that regulation of the associated
cellular processesmay involve a complex interplay between sRNAs,
transcription factors, and their respective targets.
We subsequently performed pathway enrichment for each of

the inferred sRNA subnetworks, either by Gene Ontology (GO)
term enrichment analysis or by using gene function information
obtained from EcoCyc (19). These analyses allowed us to classify
subnetworks according to function, and thereby implicate the
sRNAs as regulators of specific cellular processes (Fig. 1). We
were able to identify functional enrichment for seven of the
inferred sRNA subnetworks: iron homeostasis (under ryhB reg-
ulation), amino acid metabolism (gcvB), motility and chemotaxis
(micF), pH adaptation (gadY), DNA repair (glmZ and isrA),
protection and adaptation to stress (cyaR), and extracellular
transport (dicF). The involvement of RyhB in iron homeostasis
and GadY in the regulation of acid response has been reported
previously (7, 20). Our network analyses correctly characterized
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these functions and additionally, suggested important roles for
sRNAs in other cellular responses. Network topology also shows
connectivity between functional processes. Although direct
connections between functional processes may be tenuous, this
predicted architecture shows that expression of intermediary
genes varies significantly with multiple sRNAs, alluding to
themes of overlapping sRNA regulation to coordinate global
behavior. The functional annotations in our network, made
possible by the identification of a large number of putative tar-
gets for Hfq-dependent sRNAs in E. coli, provide a basis for
further exploration of the functional roles of sRNAs.
The compendium of microarray expression profiles used to

reconstruct our regulatory network encompasses broad pertur-
bations, such as different growth conditions and stress inductions
(Table S1A). Including chips with sRNA-related genetic per-
turbations (e.g., hfq mutants) and additional environmental
perturbations that increase the expression landscape of the cell
would improve the algorithm’s performance (Table S1B and Fig.
S2). Furthermore, because our approach relies on RNA ex-
pression data, our approach is limited to predicting regulation
that affects transcript levels. This finding could explain the ab-
sence of functional predictions for the oxyS and spf subnetworks
(Fig. 1), as these sRNAs are known to regulate translation of
their targets (21–23). Incorporating data at the translational

level, such as from 2D gels and mass spectrometry profiling,
would improve the predictive power of our approach in the
discovery of regulatory roles for sRNAs.

IsrA and GlmZ Are Involved in the DNA Damage Response. To assess
the validity of our network approach, we chose to explore the
predicted involvement of the GlmZ and IsrA sRNAs in the
cellular response to DNA damage. GlmZ is known to activate
GlmS, a protein involved in the biosynthesis of amino sugars
(constituents of the cell wall) to regulate expression based on the
availability of external sugars (24). In contrast, no information
has been published on IsrA (IS061) since its discovery in a bio-
informatics-based screen (25). Our network results show that
w15% of the putative targets for these two sRNAs are involved
in the DNA damage response, with 53% of these genes being
under the regulation of the LexA repressor protein (Fig. 2A and
Table S2 B and C).
To investigate the predicted role of these sRNAs, we treated

E. coli cultures with DNA-damaging agents, specifically, the
gyrase inhibitor norfloxacin, mitomycin C (MMC), and UV ra-
diation, and observed their morphology. It is known that the SOS
response induces filamentous growth, which is considered to be
indicative of the state of DNA damage (26). Although the single-
gene deletion strains, ΔisrA and ΔglmZ, did not exhibit a mor-
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phological phenotype that was different from wild-type (Fig. S3),
the double-deletion strain, ΔisrAΔglmZ, did show substantially
less filamentation (Fig. 2B and Fig. S3).
We next sought to determine the effects of IsrA and GlmZ on

cell survival under DNA damage. We measured cell viability
following treatment with norfloxacin, MMC, and UV, and found
that the double-deletion strain was significantly less sensitive
than wild-type to each of the treatments (Fig. 2C).
Because cells experience low levels of DNA damage under

normal physiological conditions (27), we were also interested in
determining if the basal mutation rate of the ΔisrAΔglmZ strain
differed from wild-type in unperturbed conditions. We found
that the mutation rate of the sRNA double mutant is approxi-
mately threefold less than that of wild-type (Fig. 2D).
Together, these results suggest that IsrA and GlmZ function

as DNA repair regulators, possibly in a redundant manner. We
speculate that these two sRNAs act by differentially affecting the
regulation of specific genes within the LexA regulon. The SOS
system is an important stress response that has been shown to
play a central role in a variety of mechanisms, including antibi-
otic tolerance (17) and antibiotic-resistant gene transfer (29).
Our work indicates that the sRNAs IsrA and GlmZ may play
critical regulatory roles in this important cellular stress response.

GcvB Is Involved in the Regulation of Amino Acid Availability. We
next chose to examine the inferred subnetwork for the GcvB
sRNA. GcvB has been shown to regulate peptide transport (30,
31) and acid stress in E. coli (32). Functional enrichment of the
genes predicted to interact with GcvB in our inferred network

(Fig. 3A and Table S2D) revealed that w50% of them are in-
volved in amino acid transport and metabolic processes, sug-
gesting a broader role for GcvB in nutrient availability.
To assess this predicted role for GcvB, we measured growth

rates of strains cultured in minimal media supplemented with
different amino acids. Growth experiments in varying nutrient
conditions have been used to implicate a number of genes in
metabolism and transport. In our study, we compared the dou-
bling times of two mutants, a ΔgcvB strain and a strain consti-
tutively expressing gcvB, to that of wild-type. We observed that
the growth rate of the mutants did not differ from wild-type in
unsupplemented conditions (Fig. S4). However, the growth rates
in one or both of the gcvB strains were significantly different
when supplemented with leucine, serine, phenylalanine, or thre-
onine (Fig. 3B). These results support our network-derived hy-
pothesis that GcvB plays a broad role in the regulation of amino
acid availability and metabolism.

GcvB Represses Lrp. Among the genes predicted to interact with
GcvB is lrp, which encodes the Lrp transcription factor, an im-
portant regulator of amino acid availability (33). We hypothe-
sized that GcvB regulates amino acid pathways through modu-
lation of Lrp.
Sequence information and corresponding secondary structure

have been used to uncover sRNA targets (31). Accordingly, we
used TargetRNA, a sequence-based algorithm with high-perfor-
mance capabilities (34), to explore the possibility of a physical
interaction between GcvB and Lrp. TargetRNA identifies 21 pu-
tative targets of GcvB in E. coli using default parameters (Fig. S5).
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Fig. 2. A functional role for IsrA and GlmZ in the
DNA damage response. (A) Inferred network
connections for IsrA and GlmZ. Of the identified
interactions, 18 are involved in DNA damage
pathways. Approximately 50% of these DNA re-
pair genes are members of the LexA regulon. (B)
Representative micrographs of MG1655 (Left) and
ΔisrAΔglmZ MG1655 (Right) before (100× objec-
tive) and during DNA damage treatment (40×
objective). Images show cells during norfloxacin
treatment (125 ng/mL, T = 3 h), MMC treatment (2
μg/mL, T = 2 h), and repeated UV exposure (100 J/
m2, T = 1.5 h). See Materials and Methods for
treatment details and Fig. S3 for full micrograph
images. (C) Log change in colony-forming units
per milliliter (CFU/mL) during DNA damage ex-
posure. Survival of MG1655 (blue diamonds) and
ΔisrAΔglmZ MG1655 (red squares) following ex-
posure to norfloxacin (125 ng/mL), MMC (2 μg/
mL), and repeated UV exposure (100 J/m2). In this
and all other figures, error bars represent ± SE. (D)
Basal mutation rate (mutations per cell per gen-
eration) for MG1655 (blue) and ΔisrAΔglmZ
MG1655 (red) using a rifampicin-based selection
method. Wild-type mutation rate is similar to that
previously reported (28).
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Although the algorithm does not predict lrp to be a target of
GcvB, it does predict two targets in our network, trpE and livK.
The GcvB-trpE and GcvB-livK binding regions predicted by Tar-
getRNA overlap and together span positions 65 to 91 on the GcvB
transcript. We searched for homologies of this region’s comple-
ment within 100 bp of the lrp translational start and identified a
putative binding site for GcvB in the lrp 59UTR (Fig. S6A).
To examine this putative direct interaction between GcvB and

Lrp, we used an lrp gene fusion to GFP to function as a reporter
of translational control by GcvB. Our translational fusion con-
sisted of the 59UTR of Lrp and the first 15 amino acids fused to
the N terminal of GFP, and was constructed using the modular
plasmid system described by Urban and Vogel (11). This system
was designed to confirm sRNA-mediated control of mRNA
targets through its ability to uncouple both species from the
chromosomal regulatory network and to reliably suppress
pleiotropic effects of sRNA expression on target fusion tran-
scription. Expressing GcvB, we observed an approximately two-
fold decrease in fluorescence of the lrp::gfp fusion compared with
a control plasmid (Fig. 4A, Left). We used a dppA::gfp fusion as
a positive control for our expression system (Fig. 4A, Left) and
obtained results for this known GcvB target that were consistent
with those previously reported (11). As a control to address
potential indirect regulation of lrp::gfp, we experimentally dem-
onstrated that the MicF sRNA, which is not predicted to interact
with Lrp, had no effect on the Lrp fusion (Fig. S6B).
To obtain additional evidence of the interaction between

GcvB and Lrp, we mutated the predicted binding region in the
59UTR of lrp. Four base-pair mutations were made to our target
fusion—specifically, A(-9)T, C(-8)G, A(-7)T, and A(-6)T—
where base position is with respect to the lrp translational start.
These mutations eliminated GcvB repression of the Lrp tran-
script (Fig. 4A, Right). Taken together, these results demonstrate
the direct posttranscriptional repression of Lrp by GcvB and
offer an sRNA-transcription-factor regulation scheme for the
control of amino acid availability.

gcvB Is Regulated by Lrp. Analysis of our microarray compendium
revealed that expression of gcvB and lrp are anticorrelated, in-
dependent of growth phase, suggesting that these genes function
in a complex regulatory circuit. Mutually regulating elements

endow networks with interesting properties, such as bistability
and memory (35, 36). There is precedence for this type of motif
at the posttranscriptional level in eukaryotes (37), and many
other network architectures have been demonstrated in bacterial
sRNA regulation (38, 39). However, mutually inhibitory net-
works involving sRNAs have not been found in bacteria. We
hypothesized that Lrp and GcvB function together in a mutually
inhibitory network for controlled pathway regulation of cellular
amino acid availability.
Building on our results that establish GcvB regulation of Lrp

(Fig. 4A), we sought to explore Lrp regulation of gcvB. In elu-
cidating the relationship of Lrp to gcvB, it was important to do so
within the context of known regulation. GcvB is activated by the
glycine cleavage system regulator, GcvA, under glycine-rich
conditions (40). This interaction is dependent upon Lrp binding
and is negatively regulated by GcvR when glycine is limiting (41).
Using quantitative PCR, we measured relative expression levels
of gcvB in wild-type, ΔgcvA, and Δlrp, with and without glycine
addition (Fig. 4B). We found that gcvB expression is significantly
lower in ΔgcvA under glycine-rich conditions, confirming known
regulation. Interestingly, we also found that gcvB transcript levels
are w30-fold greater in Δlrp compared with wild-type, in-
dependent of glycine addition. Because Lrp is a central regulator
of cellular processes, it is possible that Lrp mediates negative
regulation of gcvB indirectly. To investigate dependence on
GcvA, we compared relative gcvB expression in ΔgcvAΔlrp and
ΔgcvA (Fig. S6C) and found that significantly higher levels of
gcvB are present in ΔgcvAΔlrp strain, demonstrating that Lrp
regulation is not mediated exclusively through GcvA.
We next used sequence analysis to look for evidence that may

suggest a direct interaction of Lrp on gcvB. We used ClustalW2
(42) to search for known Lrp-binding consensus sequences (43,
44) in the 500-bp region upstream of gcvB. Homology results
indicate that there are two putative binding sites for Lrp in this
region (Fig. S6D). These data suggest a direct interaction of Lrp
on gcvB; however, an indirect regulation scheme remains possi-
ble and cannot be excluded.
Collectively, our analyses indicate that Lrp and GcvB repress

each other (directly or indirectly) in a mutually inhibitory net-
work (Fig. 4C). We speculate that E. coli can use this dual re-
pression scheme to create a controlled response to changing
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Fig. 3. A functional role for GcvB in amino acid availabil-
ity. (A) Inferred network connections for GcvB. From our
CLR results and GO term enrichment, GcvB shows a large
number of interactions (51%) with genes involved in amino
acid metabolism and transport, including the transcrip-
tional regulator Lrp. Approximately 28% of these amino
acid-related genes are members of the Lrp regulon. (B)
Doubling times for MG1655 + pZA31-null (white bars),
ΔgcvB MG1655 + pZA31-null (black bars), and ΔgcvB
MG1655 + pZA31-gcvB (gray bars) in M9 minimal media,
calculated using OD600 values. Leucine and phenylalanine
were supplemented at 2 mM, and serine and threonine
were supplemented at 1 mM. No growth was observed for
ΔgcvB MG1655 + pZA31-gcvB in serine-supplemented me-
dia. Asterisks represent significant (P < 0.05) differences in
growth rate compared with MG1655 + pZA31-null.
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amino acid availability in the environment, allowing for robust
adaptation and resource conservation.

Conclusions
In this work, we have shown how a network biology approach can
be used to elucidate bacterial sRNA functional and regulatory
roles. Although our network map does not discern between direct
and indirect sRNA-gene interactions, our methodology can also
be used to improve current methods of sRNA target identification.
Direct interactions within our network can be uncovered by fil-
tering network predictions with sequence-alignment tools or other
target detection methods (14), as we illustrate for GcvB-mediated
regulation of Lrp. Examining expression levels of predicted sRNA
targets in relevantly perturbed hfq mutant strains may provide
additional confirmation of direct interactions.
The approach described in this work, which relies on compendia

of expression data, can be readily extended to other organisms and
used to characterize sRNAs in pathogens as well as microRNAs in
eukaryotes. Efforts along these lines could enhance our un-
derstanding of the posttranscriptional regulatory events that lead
to pathogenicity or disease states, like cancer. Furthermore, as
efforts to discover novel sRNAs lead to larger and more extensive
RNA-seq expression datasets, our network biology approach
could enrich the information found in these expression profiles to
infer function of newly discovered sRNAs.
The present study also highlights how large-scale biomolecular

networks can be used to guide the discovery and detailed ex-
perimental investigation of small-scale networks. In our case,
a large-scale, reconstructed sRNA regulatory network enabled us
to uncover an intriguing mutually inhibitory network made up of
a small RNA and a transcription factor.
Understanding the regulatory roles of noncoding RNAs in

prokaryotic and eukaryotic regulation presents an exciting chal-
lenge. Reverse genetics methodologies aspire to illuminate the
subtle and complex interactions of RNA regulation, and the extent
of their influence is slowly being uncovered. Our work shows that
network biology approaches can make significant contributions to
these efforts and facilitate the efficient reconstruction of func-
tional and regulatory maps.

Materials and Methods
Network Inference. The sRNA network was inferred using the CLR algorithm.
The algorithm uses mutual information to score the similarity between ex-
pression levels of two genes in a set of microarrays and applies an adaptive
background correction step to eliminate false correlations and indirect

influences (16). A gene pair is predicted to interact if their mutual in-
formation score is larger than an FDR-corrected score (18) at a given sig-
nificance threshold (q < 0.005). The data used as input to the algorithm was
an existing compendium of 759 Affymetrix E. coli Antisense2 microarray
chips normalized as a group with RMA. The compendium includes arrays
from the Many Microbe Microarray Database (E_coli_v3_Build_3), as well as
235 arrays run in-house, with experiments involving antibiotic treatment,
biofilm growth, different growth media, acid shifts, anaerobic growth, as
well as various perturbations of coding genes (Table S1A).

To gain insight into the functional roles of Hfq-dependent sRNAs, we
performed pathway enrichment for each of the inferred sRNA subnetworks,
either by GO term enrichment analysis (P value < 0.05, minimum GO term
depth of 3) or by using gene function information obtained from EcoCyc
(19). See SI Materials and Methods for more details and references on
network analysis.

Media and Growth Conditions. Cultures were grown at 37 °C in Luria-Bertani
broth (Fisher Scientific), M9 minimal media supplemented with 0.4% glucose
(Fisher Scientific), or EZ Rich Defined media (Teknova). Antibiotics were
added to the growth media for selection at the following concentrations:
chloramphenicol (30 μg/mL; Acros Organics) and ampicillin (100 μg/mL; Fisher
Scientific). Amino acids (Sigma), when supplemented, were used at the fol-
lowing concentrations: leucine and phenylalanine (2 mM), serine and thre-
onine (1 mM), and glycine (300 μg/mL). Optical densities were taken using
a SPECTRAFluor Plus plate spectrophotometer (Tecan).

Strains and Plasmids. All experiments were performed with E. coli MG1655
(ATCC 700926)-derived strains (Table S3A). Gene deletions were derived ei-
ther from P1 phage transduction from the Keio collection (45) or by the PCR-
based phage-λ red recombinase method (46). Expression vectors of gcvB
were derived from the pZ system (47). Translational fusion-related plasmids,
pXG-1, pXG-0, pXG-10, and pSK-015, were used for constructing and ex-
amining the target fusions mentioned above, and were kindly provided by
Jörg Vogel, Institute for Molecular Infection Biology, University of Würz-
burg, Würzburg, Germany. Site-directed mutagenesis was performed using
the Phusion Site-Directed Mutagenesis kit (New England Biolabs). See SI
Materials and Methods for details on plasmid construction.

DNA Damage Sensitivity Assays. Cultures of the various strains were grown in
25 mL LB medium in 250 mL flasks to an OD600 of 0.3 (time 0), at which time
they were exposed to three different DNA damaging agents (norfloxacin,
MMC, and UV light). For norfloxacin-treated cultures, norfloxacin was added
at a concentration of 125 ng/mL. For MMC-treated cultures, MMC was added
at a concentration of 2 μg/mL. UV treatment was delivered using a Stra-
talinker UV box (Stratagene) such that cultures were exposed to 100 J/m2 of
UV radiation every 30 min over the course of 2 h. Strain viability was assessed
by collecting aliquots of the cultures at time 0 (just before exposure to the
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Fig. 4. Mutual inhibitory relationship of GcvB and Lrp. (A)
GFP translational fusions for dppA and lrp (Left) and lrp
and lrp-mut (Right). dppA::gfp (plasmid pSK-015) was
grown in EZ rich media to model conditions in which it was
originally tested (11). lrp::gfp and lrp-mut::gfp were grown
in M9 minimal media to assess the effects of gcvB expres-
sion in nutrient-limiting conditions. Unregulated target
fusion specific fluorescence (expressing control vector) is
shown in gray, and regulated target fusion specific fluo-
rescence (expressing gcvB) is shown in orange. See Mate-
rials and Methods and SI Materials and Methods for details
on fluorescence measurements and calculations. Asterisks
represent significant (P < 0.05) differences between un-
regulated and regulated target fusion specific fluores-
cence. (B) Fold-difference in gcvB expression in ΔgcvA and
Δlrp relative to wild-type during growth in M9 minimal
media. Blue bars represent relative expression when ex-
ogenous glycine was absent, and red bars represent rela-
tive expression when glycine (300 μg/mL) was added to the
media. Error bars represent propagated error measures. (C)
GcvB-Lrp regulatory subnetwork resulting from trans-
lational fusion, expression data, and known regulatory
interactions. Unsequestered GcvA activates gcvB expression
when glycine is present. GcvB directly represses Lrp and Lrp
directly or indirectly represses gcvB.
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DNA damaging agent) and at 1-h intervals (norfloxacin and MMC) or 30-min
intervals (UV) following exposure to the DNA damaging agent. Viability of
the various strains at each time point was determined by measuring the CFU
per milliliter, as described previously (48). Briefly, serially diluted cells were
spot plated on LB-agar plates and grown overnight at 37 °C. Colonies were
counted at those dilutions with w10 to 50 cells, and CFU per milliliter was
calculated using the following formula: CFU/mL = [(# of colonies) × (dilution
factor)]/0.01 mL. Average CFU per milliliter was determined based on the
results of three biological replicates.

Translational Fusion Experiments and Calculations. At inoculation, cultures
were induced with 1 mM IPTG (Invitrogen) for gcvB expression and grown to
an OD600 of 0.3 in M9 minimal media (lrp::gfp and lrp-mut::gfp) or EZ rich
media (pSK-015). Fluorescence measurements were taken, and relative
fluorescence values were calculated as previously described (11) using the
following formula: fold-change mediated by sRNA = (regulated target fu-
sion specific fluorescence)/(unregulated target fusion specific fluorescence),
where regulated target fusion specific fluorescence = [fluorescence(ΔgcvB +
pZA12-gcvB + target fusion) − fluorescence(ΔgcvB + pZA12-gcvB + pXG-0)]
and unregulated target fusion specific fluorescence = [fluorescence(ΔgcvB +
pZA12-null + target fusion) − fluorescence(ΔgcvB + pZA12-null + pXG-0)].
The effect of micF expression on lrp::gfp was calculated similarly. See SI
Materials and Methods for more details.

cDNA Synthesis and qPCR. Quantitative PCR was performed using the Roche
LightCycler 480 and the LightCycler 480 SYBR Green I Master Kit (Roche
Applied Science) according to the manufacturer’s instructions. Relative
quantification of gcvB was determined by the ΔΔCp method using rrsH (16S
ribosomal RNA) as a reference gene. Fold-changes were calculated by com-
paring relative expression across the same conditions in the strains mentioned
in the text. See SI Materials and Methods and Table S3B for more details.

Statistical Analysis, All data are representative of mean values of replicates,
except in Fig. 2D, where the median was used to calculate the mutation rate.
Error bars represent ± SE, which was propagated when necessary as de-
scribed by others (49). Statistical significance was calculated between data
sets using a two-tailed t test assuming unequal variance in the population.
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