






predicts a 4/3 power. This difference indicates that tree struc-
tures of dendrites are functionally distinct from distribution
networks such as vasculatures for which that model has been
shown to work (14) and that design constraints other than re-
source distribution may be important determinants of dendritic
shape. At the very least, the assumption of invariant terminal
units in the West et al. model (14) does not seem to hold for
dendritic trees, which implies that the growth algorithm for
vascular, bronchial, and botanical trees is distinct from that
of neurons.
The structural constraints on dendritic morphology we have

demonstrated are likely to have implications for the computa-
tions implemented by neural circuits. First, we have demon-
strated that the power law is reflected in the passive integrative
properties of neurons such as functional compartmentalization,
meaning that it places constraints on information processing.
Furthermore, an interesting consequence of minimizing wiring to
target synapses is that synapses that are close together are more
likely to be linked by the same stretch of dendrite and therefore

involved in a local computation (31–33), such that geometry is
a key determinant of information processing. There is increasing
evidence that such sophisticated local processing may be carried
out within the dendritic tree (34, 35), with nonlinear interactions
between synaptic inputs shaping the output of the neuron (36–
39). We therefore predict it will be fruitful to study how the
scaling laws of wiring and branching place constraints on the
overall computational power of single neurons.

Materials and Methods
Wiring Algorithm. Optimal wiring was implemented as previously described
(6) to minimize both total cable length and the cost for path lengths from
any target point along the tree toward the root (6). The second cost is
weighted by the balancing factor bf, the only parameter required by the
wiring algorithm: total cost ¼ wiring cost þ bf × path length cost. These
methods have been successfully used for a wide variety of dendrites (8, 39)
and all algorithms are available in the TREES toolbox (8, 39).

Morphological Modeling of Simplified Trees. Various simplified 2D and 3D
geometries were used in Fig. 1C and Figs. S2D and S7C (Top Insets):
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Fig. 3. Power law relationships governing the dendritic geometry of newly born periglomerular cells in the adult olfactory bulb. (A) Consecutive reconstructions
of a newborn periglomerular neuron (17) separated by 12-h time steps starting at 10 d after origin. Note that dendritic complexity increases without an increase
in total volume occupied. (B) Quantitative analysis of the same neuron shows that the dendritic volume (convex hull; similar results obtained using a distance
hull) that it spans remains fixed (black), whereas the branching complexity increases (red). (C) Corresponding population data (17) for two distinct time points
during the maturation show that there is no change in spanning volume (10 d, n = 24 neurons; 45 d, n = 9 neurons; 180 d, n = 8 neurons), same y axis as B. (D)
Total dendrite length L vs. number of synaptic puncta n in experimental data (black circles, n = 47 neurons) (18, 40) including immature (14 d), mature (45 d), and
very old (180 d) cells as well as young cells (14 d) grown in a sensory-enriched environment. All data follow the same trend expressed by
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were normalized to a volume of 1,000,000 μm3. Inset shows ratios between number of branch points bp and number of synaptic puncta n. (E) Reconstructions of
a real PG cell at three different ages (red cells, Left to Right) and the corresponding GFP-marked synaptic puncta (green circles; neurons from ref. 18). Corre-
sponding synthetic PGs (black) were grown on the same synaptic locations while optimizing the wiring. (Bottom) Sholl intersection diagrams, which count the
number of intersections to a sphere of increasing size around the soma (41), quantify the topological similarity for the three different maturation levels,
comparing the real reconstructions (red) and the synthetic counterparts (black), and show a good overlap (8.7% error).
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(a) A “circular” and “spherical” arrangement with a root in the center
and target points homogeneously randomly distributed.

(b) Corresponding “inhomogeneous” arrangements, similar to the circu-
lar arrangement except that the target points were distributed in an
inhomogeneous manner.

(c) The “off-center” arrangement, similar to the circular arrangement
except that the root was displaced from the center.

(d) Corresponding “square” and “cubic” arrangements confined to
boundaries with straight lines to form a square.

The target points were then connected for all cases in the same way as
previously described. For the electrotonic analysis, a quadratic diameter taper
according to ref. 6 (using the function “quaddiameter_tree” of the TREES
toolbox) was mapped onto the dendrites, and sample specific membrane
resistances of 2; 000 Ωcm2 and axial resistances of 100 Ωcm were used.

Anatomical Analysis of Other Cell Types. All data from the NeuroMorpho
database (www.neuromorpho.org; version as of October 7, 2011) (16) were
used for Fig. 2. These data include 142 datasets and 6,577 reconstructions (6
were discarded because the files could not be read) of dendrites and axons.
Of the 142 datasets, 74 datasets had enough reconstructions (at least 10) to
fit the power law. Dendritic spanning volumes were estimated using the
convex hull of the dendritic tree. To fit a power law to the data, the number
of branch points and total length were first normalized by their respective
volume. Then the log of the data was used in a linear regression. From

simulation in Fig. 1D a slightly inhomogeneous power distribution above 2/3
was expected with the power increasing slightly with higher bf. The power
in the fitted power law including all 6,577 reconstructions from Neuro-
Morpho was 0.70 (Fig. 2), which is consistent with this result.

Anatomical Reconstructions of PG Neurons. Reconstructions of mouse PG
neurons were obtained from a published dataset (17, 18, 41). Briefly, in these
studies, neurons were infected with a GFP or PSD95-GFP marker gene, the
latter labeling putative synapse locations, by viral injection into newborn PG
cells. These cells were left to migrate toward their specific glomerulus for
10 d and subsequently 3D image stacks were collected through a craniotomy
in 12-h intervals, using a two-photon microscope. Reconstructions of tree
morphologies and synapse locations were obtained from these image stacks,
using Neurolucida (Mbf Bioscience). The morphologies were imported into
our Matlab software package, the TREES toolbox (8, 40), and further analyzed.
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