Refactory inclusions [calcium–aluminum-rich inclusions, CAIs] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of 26Al corresponding to 26Al/27Al of $\sim 5 \times 10^{-5}$, rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and 26Al/27Al of $<5 \times 10^{-6}$, possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf-182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al of $\sim 3 \times 10^{-6}$. The decoupling between 182Hf and 26Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for 182Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for 26Al. Admixing of stellar-derived 26Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the 26Al-26Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support 182Hf homogeneity and chronological significance of the 182Hf-182W clock.

Meteorites and their components contain evidence for the presence of now extinct short-lived ($t_{1/2} < 10$ Ma) radioisotopes (e.g., 41Ca, 26Al, 60Fe, 53Mn, and 182Hf) during the earliest stages of the Solar System’s evolution. These radioisotopes are believed to have an external, stellar origin, and were either inherited from the ambient interstellar medium or injected into the protosolar molecular cloud before or contemporaneously with its collapse (1). Understanding how and when these radioisotopes were added to the nascent Solar System can constrain the astrophysical environment where our Sun formed and, therefore, test models of Solar System formation. The oldest Solar System solids preserved in chondritic meteorites are calcium–aluminum-rich inclusions (CAIs), which define an absolute age of 4.56730 ± 0.016 Ma (2). These millimeter-to-centimeter objects are believed to have formed as fine-grained condensates from a 16O-rich gas of approximately solar composition in a region with high ambient temperature (>1300 K) and low total pressures ($\sim 10^{-8}$ bar). This environment existed in the innermost part of the protoplanetary disk during the early stage of its evolution characterized by high mass accretion rates ($\sim 10^{-2} M_\odot$ yr$^{-1}$) to the proto-Sun (3). Formation of CAIs near the proto-Sun is also indicated by the presence in these objects of the short-lived radioisotope 10Be formed by solar energetic particle irradiation (4). Some of the CAIs subsequently experienced melting and evaporation to form distinct coarser igneous inclusions, such as the compact Type A and Type B CAIs commonly observed in CV meteorites (carbonaceous chondrite of the Vigarano type) (5).

The majority of CAIs in unmetamorphosed chondrites contain high abundance of radiogenic 26Mg (26Mg*), the decay product of 26Al ($t_{1/2} \sim 0.7$ Ma), corresponding to an inferred initial 26Al/27Al ratio of $\sim (4.5-5.5) \times 10^{-5}$ (6). Recent high-precision 26Al-26Mg systematics of bulk CV CAIs define the so-called canonical 26Al/27Al ratio of $\sim 5.252 \pm 0.019 \times 10^{-5}$ (7). The uncertainty of the canonical 26Al/27Al ratio corresponds to ± 4000 y, implying a brief episode of condensation and melt evaporation that resulted in Al/Mg fractionation event(s). However, it is uncertain whether the canonical 26Al/27Al ratio reflects that of the bulk Solar System or, alternatively, only a local snapshot of the evolving inhomogeneous protoplanetary disk. A rare subset of refractory grains [platy hibonite crystals (PLACs) and blue aggregates (BAGs), ref. 8] and inclusions (6, 9) have low initial 26Al/27Al ratios ($<5 \times 10^{-6}$). Of particular interest are the coarse-grained igneous inclusions with fractionation and unidentified nuclear effects (FUN CAIs, ref. 10), which, in addition to their low initial abundance of 26Al, are characterized by large mass-dependent fractionation effects and nucleosynthetic anomalies in several elements. These observations are interpreted to reflect formation of FUN CAIs by thermal processing of presolar dust aggregates before the injection of 26Al and its homogenization in the protoplanetary disk (11). If this interpretation is correct, FUN CAIs can provide insights into the timing of admixing of 26Al to the forming protoplanetary disk and, in turn, the origin of short-lived radioisotopes in the early Solar System. However, a late formation of 26Al-poor CAIs after decay of 26Al cannot be excluded. Indeed, CAIs are known to have experienced multistage thermal processing in the protoplanetary disk and/or on their chondrite parent bodies (5) that could have erased their radiogenic 26Mg. Thus, obtaining a robust age estimate for a FUN inclusion is a critical step toward a better understanding of the significance of 26Al-poor inclusions.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

26Al-poor inclusions after decay of 26Al cannot be excluded. Indeed, CAIs are known to have experienced multistage thermal processing in the protoplanetary disk and/or on their chondrite parent bodies (5) that could have erased their radiogenic 26Mg. Thus, obtaining a robust age estimate for a FUN inclusion is a critical step toward a better understanding of the significance of 26Al-poor inclusions.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

26Al-poor inclusions after decay of 26Al cannot be excluded. Indeed, CAIs are known to have experienced multistage thermal processing in the protoplanetary disk and/or on their chondrite parent bodies (5) that could have erased their radiogenic 26Mg. Thus, obtaining a robust age estimate for a FUN inclusion is a critical step toward a better understanding of the significance of 26Al-poor inclusions.
Results and Discussion

Most known FUN CAIs were discovered >30 y ago and were largely consumed during destructive isotopic measurements. To identify additional FUN CAIs suitable for age dating, we conducted a systematic search of coarse-grained refractory inclusions in the Allende CV carbonaceous chondrite, given that CV chondrites contain the highest proportion of igneous CAIs among the distinct chondrite groups. Of ~220 inclusions investigated, only one FUN CAI was identified on the basis of its bulk magnesium–isotope composition. This FUN inclusion, named STP-1, is a coarse-grained igneous Type B2 CAI composed of melilitite, spinel, Al,Ti-diopside, and anorthite. STP-1 contains only minor amounts of secondary minerals (nepheline, sodalite, grossular, and monticellite), indicating that it largely avoided secondary alteration processes. Similar to most previously identified FUN CAIs (10, 12), STP-1 shows mass-dependent enrichment in the heaviest isotopes of magnesium, as well as deficits in the mass-independent components of 26Mg (26Mg*) and 54Cr of ~300 to ~3,500 ppm (respectively, Table 1). Trace element analysis demonstrates that STP-1 is characterized by a Group II rare-earth element (REE) pattern (Fig. 1), indicative of condensation from a gas depleted in the most refractory REEs (13). On a three-isotope oxygen diagram, compositions of spinel, anorthite, hibonite, and most Al,Ti-diopside grains plot along a mass-dependent fractionation line with a slope of 0.52 and Δ17O values of ~24 ± 1‰. Oxygen–isotope compositions of melilitite and some Al,Ti-diopside grains deviate from this line and show Δ17O values ranging from ~17 to ~4‰ and from ~24 to ~17‰, respectively (Fig. 2). The igneous texture and the fractionated magnesium and oxygen–isotope composition favoring the heaviest isotopes imply that STP-1 experienced melt evaporation at low total pressure (14) following condensation of its precursor material. To determine the formation age of STP-1, we have investigated its 182Hf–182W systematics in the Allende CV carbonaceous chondrite, given that CV chondrites intersect the carbonate chondritic composition, suggesting that the precursor material of primitive asteroids that presumably accreted in the outer Solar System had similar initial 182Hf content as CAIs (16). Second, there is excellent agreement between uranium-corrected Pb–Pb and Hf–W ages of rapidly cooled magmatic meteorites (19). Lastly, CAIs with variable tungsten nucleosynthetic anomalies define the same initial 182Hf abundance (17), indicating that the source of 182Hf is decoupled from that responsible for nucleosynthetic heterogeneity in refractory elements such as tungsten. The Al,Ti-diopside, anorthite and melilitite fractions separated from STP-1 define a statistically significant 182Hf–182W isochron corresponding to an initial 182Hf/182W ratio of (9.60 ± 1.10) × 10−5 and intercept of ~113 ± 27 ppm, when the 186W/183W is used to correct for instrumental mass fractionation (Fig. 3B). Using a different isotope pair for internal normalization yields an identical initial 182Hf/182W within uncertainty but a different intercept of ~26 ± 26 ppm (see the legend of Fig. 3). These two intercept values are distinct from the inferred Solar System initial 182Hf/182W value of ~351 ± 10 ppm (18), indicating the presence of tungsten nucleosynthetic heterogeneity in STP-1. In contrast, the internal 182Hf–182W isochron of STP-1 corresponds to a 182Hf/182W ratio that is identical within analytical uncertainty to the Solar System initial 182Hf/182W ratio of (9.85 ± 0.40) × 10−5 inferred from canonical CAIs (18). Accepting the inferred initial 182Hf/182W ratio of STP-1 and associated uncertainty at face value, we calculate an age difference of 0.33 ± 0.67 Ma between formation of STP-1 and canonical CAIs, which is not consistent with the time interval of 3.02 ± 0.08 Ma inferred from the 26Al–26Mg system. Thus, we conclude that the formation age of STP-1 and, by extension, that of 26Al-poor FUN CAIs, is coeval with canonical CAIs within the uncertainty of our measurements. These results are consistent with the proposal that 182Hf was homogeneously distributed in the solar protoplanetary disk at the time of formation of the Solar System’s first solids (16–18).

The contrasting initial abundances of 26Al recorded by CAIs with identical initial 182Hf/182W ratios indicate that 26Al was heterogeneously distributed in the protoplanetary disk during the epoch of CAI formation. Therefore, the 26Al–26Mg systematics of CAIs cannot be used to define the duration of the CAI-forming event(s). Likewise, the apparently restricted range of inferred initial 26Al/27Al ratios defined by bulk analyses of canonical CAIs from CV carbonaceous chondrites does not necessarily imply a homogeneous distribution of 26Al throughout the solar protoplanetary disk during and after the epoch of CAI formation. Assessing the degree of 26Al homogeneity in the disk requires careful comparison between the 26Al–26Mg and uranium-corrected Pb–Pb ages of objects with simple thermal histories. We note that the age difference between the formation of canonical CAIs and rapidly cooled angrite meteorites inferred from the assumption-free uranium-corrected Pb–Pb dating method is not consistent with that suggested by the 26Al–26Mg system,

Table 1. 182Hf–182W systematics of mineral fractions and bulk Mg and Cr isotope compositions of the STP-1 FUN CAI

<table>
<thead>
<tr>
<th>Sample</th>
<th>27Al26Mg</th>
<th>26Mg0</th>
<th>26Mg*</th>
<th>53Cr</th>
<th>54Cr</th>
<th>182Hf/184Hf</th>
<th>182W/184W (6/3)</th>
<th>182W/183W (6/3)</th>
<th>182W/184W (6/3)</th>
<th>184W/186W (6/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>3.18 ± 0.06</td>
<td>9.331 ± 20</td>
<td>−303 ± 10</td>
<td>260 ± 9</td>
<td>−3.579 ± 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melilitite</td>
<td></td>
</tr>
<tr>
<td>Anorthite</td>
<td></td>
</tr>
<tr>
<td>Diopside</td>
<td></td>
</tr>
</tbody>
</table>

Isotope ratios expressed in the μ-notation, which reflect 106 (ppm) deviations from the terrestrial reference standard. Uncertainties represent the external reproducibility or internal precision, whichever is larger. Mg and Cr isotope data were acquired following techniques outlined in Bizzarro et al. (33) and Trinquier et al. (34), respectively. (6/3), internally normalized to 186W/184W; (6/4), internally normalized to 184W/186W.
The decoupling between the initial abundances of 26Al and 182Hf in early-formed refractory inclusions requires distinct stellar sources to account for the presence of these short-lived nuclides in the early Solar System. In addition, the Hf-W data reported here for the STP-1 FUN CAI are most easily understood in the context of a homogeneous distribution of 182Hf at the birth of the Solar System. If correct, this implies that the carrier of this short-lived radioisotope was well mixed within the Solar System’s parental molecular cloud. Heavy r-process isotopes such as 182Hf are thought to be synthesized during the explosions of core-collapse supernovae of less than 11 M_\odot (20). Because the lifetime of these “lower mass” massive stars is significantly longer than the typical lifetime of giant molecular clouds (21), they are not expected to contribute appreciable amounts of freshly synthesized radionuclides into star-forming regions. Therefore, in agreement with models of the chemical evolution of the galaxy (20, 22), we infer that the initial 182Hf/180Hf ratio of $\sim 1 \times 10^{-4}$ recorded by FUN and canonical CAIs reflects long-term, steady-state galactic stellar nucleosynthesis before the formation of the protosolar molecular cloud. A galactic origin for the initial 182Hf in the early Solar System is consistent with the view that this radionuclide was homogeneously distributed in the protoplanetary disk at the time of formation of the Solar System’s first solids as inferred from earlier work and the 18Hf–182W data presented here for the STP-1 FUN inclusion.

In contrast with 182Hf, the Solar System’s initial inventory of 26Al is approximately 10 times higher than the background levels of the galaxy inferred from γ-ray astronomy (23) and/or models of the galactic chemical evolution (20, 22), requiring late-stage addition of stellar debris to the Solar System’s parental molecular cloud. A possibility is that the observed variable 26Al abundances during the epoch of CAI formation reflect heterogeneity in the CAI precursor material (24). Such heterogeneity could result from selective thermal processing of presolar carriers, including the carrier(s) of 26Al, thereby generating reservoirs enriched or depleted in presolar components (25). However, 26Al-poor objects such as FUN CAIs, PLACs, and BAGs show large-scale nucleosynthetic heterogeneity in the stable 48Ca and 50Ti nuclides, including both enrichments and depletions (8, 10, 12, 26, 27), implying that the heterogeneity preserved in these objects is unrelated to 26Al. Moreover, the mineralogy of STP-1, coupled with its group II REE pattern and 180O-rich composition, suggest that the precursor material of this inclusion formed by condensation from a gas of solar composition depleted in the most refractory REEs, similar to the majority of fine-grained CAIs. Thus, although it is possible that the variable nucleosynthetic anomalies present in 26Al-poor objects reflect selective thermal processing of their precursors, we conclude that the initial 26Al/27Al of $\sim 3 \times 10^{-4}$ recorded by STP-1 represents the 26Al abundance in the CAI-forming region when this inclusion crystallized.

Solids ultimately thermally processed in the CAI-forming region are believed to represent molecular cloud material accreting to the proto-Sun from the infalling envelope via the protoplanetary disk (28). In contrast with 182Hf, our results suggest that the carrier of 26Al was heterogeneously distributed in the protosolar molecular cloud and, by extension, during infall of envelope material to the protoplanetary disk. However, at the time of formation of the earliest Solar System solids, the innermost protoplanetary disk is thought to have been physically well mixed (29), implying that the observed 26Al heterogeneity during formation of FUN and canonical CAIs may be temporal rather than spatial. Thus, the different levels of 26Al in these inclusions could reflect admixing of stellar derived carrier(s) of 26Al to the protoplanetary disk during the epoch of CAI formation. Progressive admixing of 26Al to the disk can be understood in the framework of the inside-out collapse model of prestellar cores, where the innermost portion of the core collapses first, followed by the successive outer layers (30). This interpretation requires the innermost part of the protostellar molecular cloud to have been depleted in 26Al compared with the remaining cloud, and that the formation of FUN CAIs predates canonical CAIs, the latter being allowed by the 182Hf–182W age uncertainty of the STP-1 FUN CAI.

A galactic origin for the initial abundance of 182Hf recorded by the FUN and canonical CAIs requires ~ 18 Ma of free decay between last nucleosynthetic event that produced the heavy...
accepting that this value represents that of the 26Al-poor region freshly synthesized 26Al present in canonical CAIs. If correct, the 60Fe/26Al value of canonical and FUN CAIs, given that most of the 26Al in the early life of the GMC will be synthesized and ejected by the stellar winds of massive stars where 60Fe is not produced.

Materials and Methods
We conducted a systematic search for new FUN CAIs by investigating the Mg–isotope composition of numerous igneous CAI-like objects in cut sections of an ∼3 kg fragment of the Allende CV carbonaceous chondrite. All igneous CAI-like inclusions of appropriate size were sampled with a computer-assisted microdrilling device fitted with 300-μm-diameter diamond-coated microdrills. The sampled material was digested using hydrofluoric (HF)–HNO3 acid mixtures and, after complete dissolution, a 5% aliquot of the sample was taken for Al/Mg ratio determination in 5% accuracy using a ThermoFisher X-Series II inductively coupled plasma mass spectrometer (ICPMS) at the Centre for Star and Planet Formation in Copenhagen. The magnesium from samples with Al/Mg ratios typical of CAIs was purified by ion-exchange chromatography and its isotopic composition analyzed using a ThermoFisher Neptune multiple collector inductively coupled plasma source mass spectrometer (MC-ICPMS) at the Centre for Star and Planet Formation in Copenhagen, following protocols outlined in Bizzarro et al. (33). One inclusion was typed by a resolvable deficit in 26Mg* of ∼300 ppm as well as a stable Mg–isotope composition enriched in the heavy isotopes by ∼1%amu. This inclusion, named STP-1, was classified as a FUN CAI and selected for further analysis. Present on the surfaces of two 3-mm-thick sections, the STP-1 FUN CAI is a spherical inclusion of ∼10 mm in diameter. Once the inclusion was liberated from the Allende meteorite, polished sections were made from the extracted material for petrographic characterization, mineral chemistry and in situ 26Al–27Al and O–isotope work.

Elemental maps of sections and electron microprobe analyses of individual minerals were performed with the University of Hawaii (UH) field-emission electron JEOL JXA-8500F operated at 15-kV accelerating voltage, 15-nA beam current, and fully focused beam using five wavelength spectrometers. The STP-1 inclusion is a coarse-grained igneous CAI composed of pure anorthite, gehlenitic melilite (Åk628.5 wt %, TiO2 0.03 wt %), Al2O3 0.1%/amu. This inclusion, named STP-1, was classified as a FUN CAI and selected for further analysis. Present on the surfaces of two 3-mm-thick sections, the STP-1 FUN CAI is a spherical inclusion of ∼10 mm in diameter. Once the inclusion was liberated from the Allende meteorite, polished sections were made from the extracted material for petrographic characterization, mineral chemistry and in situ 26Al–27Al and O–isotope work.

Following removal from the Allende slab and cleaning, bulk fragments of STP-1 were preserved for bulk isotopic and elemental analyses. The remaining material was gently crushed in an agate mortar under distilled ethanol and minerals were handpicked under binocular microscopes in both plain and back lighting. REE abundances were determined on the X-Series II ICPMS from a bulk aliquot of STP-1, using sample-standard bracketing techniques. The chromium isotope composition of a separate bulk aliquot was determined based on previously published techniques (34) using a ThermoFisher Triton thermal ionization mass spectrometer at the Centre for Star and Planet Formation. Following cleaning, feldspar, melilite, and TiO2-Al2O3 diopside fractions were rinsed in distilled ethanol followed by 0.02 M HNO3 in an ultrasonic bath for 15 min. After complete dissolution in mixtures of concentrated HF:HNO3:H2O, a 15% aliquot of each sample was extracted and spiked with a mixed 186Hf/183W tracer for elemental abundance determinations. Tungsten was purified by ion-exchange chromatography in a two-step procedure inspired from Fritz et al. (37) and Strelow et al. (38). Samples were dissolved in 0.25 M HNO3 + 0.1 M HF + 0.1% H2O2 and loaded on a column containing 2–4 mL of AG50W-X8 resin, and W was eluted along with high-field strength elements with 1–2 column volumes (c.v.) of 0.25 M HNO3 + 0.1 M HF + 0.1% H2O2 followed by 2.5 c.v. of 0.1 M HF. After dry down, samples were dissolved in 1 M HF and loaded on a column containing 1 mL AG1-X4 resin. Residual elements were eluted sequentially with 5 c.v. of 1 M HF, 5 c.v. of 2 M HCl + 0.1% H2O2 and 2 c.v. of 6 M HCl + 0.01 M HF, whereas the W was recovered with 4 c.v. of 6 M HCl + 1 M HF.

Following tungsten purification, isotope data were acquired in static mode using the ThermoFisher Neptune MC-ICPMS at the Centre for Star and Planet Formation. Samples were converted to nitrate form, dissolved in a 2% HNO3 solution containing traces of HF, and introduced into the plasma source by means of an Anidis ii desolating nebulizer. Mass fractionations were corrected with the exponential law using the 185W/183W = 1.98594 (39). Samples were analyzed only once, and the ratios are reported as relative deviations from the mass-bias corrected NIST 3163 tungsten reference material in the µ notation (106 deviations). A blank correction...
was applied to all samples, and the uncertainty of this correction was propagated in the final uncertainties of the isotope measurements reported in Table 1. Full analytical details of procedures used for Hf/W and W isotope measurements, as well as all other data reported in this paper, are presented in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank G. J. Wasserburg for comments on an earlier version of this paper. We also thank Andy Davis and two anonymous referees for their constructive comments, which improved the quality of this paper. The Centre for Star and Planet Formation is financed by the Danish National Research Foundation (Grant DNF97).