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The synchronization of coupled oscillators is a fascinating mani-
festation of self-organization that nature uses to orchestrate es-
sential processes of life, such as the beating of the heart. Although
it was long thought that synchrony and disorder were mutually
exclusive steady states for a network of identical oscillators, nu-
merous theoretical studies in recent years have revealed the
intriguing possibility of “chimera states,” in which the symmetry
of the oscillator population is broken into a synchronous part and
an asynchronous part. However, a striking lack of empirical evi-
dence raises the question of whether chimeras are indeed charac-
teristic of natural systems. This calls for a palpable realization of
chimera states without any fine-tuning, fromwhich physical mech-
anisms underlying their emergence can be uncovered. Here, we
devise a simple experiment with mechanical oscillators coupled in
a hierarchical network to show that chimeras emerge naturally
from a competition between two antagonistic synchronization
patterns. We identify a wide spectrum of complex states, encom-
passing and extending the set of previously described chimeras.
Our mathematical model shows that the self-organization ob-
served in our experiments is controlled by elementary dynamical
equations from mechanics that are ubiquitous in many natural
and technological systems. The symmetry-breaking mechanism re-
vealed by our experiments may thus be prevalent in systems exhibit-
ing collective behavior, such as power grids, optomechanical crystals,
or cells communicating via quorum sensing in microbial populations.
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In 1665, Christiaan Huygens observed that two pendulum clocks
suspended on a beam always ended up swinging in exact anti-

phase motion (1) regardless of each pendulum’s initial displace-
ment. He explained this self-emergent synchronization as re-
sulting from the coupling between the clocks, which was mediated
by vibrations traveling across the beam. Huygens’ serendipitous
discovery has inspired many studies to establish that self-emergent
synchronization is a central process to a spectacular variety of
natural systems, including the beating of the heart (2), flashing
fireflies (3), pedestrians on a bridge locking their gait (4), cir-
cadian clocks in the brain (5), superconducting Josephson junc-
tions (6), chemical oscillations (7, 8), metabolic oscillations in
yeast cells (9), and life cycles of phytoplankton (10).
Ten years ago, the dichotomy between synchrony and disorder

was challenged by a theoretical study revealing that a population
of identical coupled oscillators can attain a state where one part
synchronizes and the other oscillates incoherently (11–23). These
“chimera states” (13) emerge when the oscillators are coupled
nonlocally (i.e., the coupling strength decays with distance be-
tween oscillators), which is a realistic scenario in many situations,
including Josephson junction arrays (24) or ocular dominance
stripes (25). Chimera states are counterintuitive because they
occur even when units are identical and coupled symmetrically;
however, with local or global coupling, identical oscillators ei-
ther synchronize or oscillate incoherently but never do both
simultaneously.
Since their discovery, numerous analytical studies (13, 14, 16–

18) involving different network topologies (14, 19, 20) and var-
ious sources of random perturbations (21, 22) have established

chimeras as a robust theoretical concept and suggest that they
exist in complex systems in nature with nonlocal interactions.
However, experimental evidence for chimeras has been partic-
ularly sparse so far, and it has only been achieved recently via
computer-controlled feedback (26, 27). This raises the question of
whether chimeras can only be produced under very special con-
ditions or whether they arise via generic physical mechanisms.
Uncovering such physical mechanisms requires analytically trac-
table experiments with direct analogs to natural systems.
Our mechanical experiment shows that chimera states emerge

naturally without the need to fine-tune interactions. We imple-
ment the simplest form of nonlocal coupling that can be achieved
using a hierarchical network with two subpopulations (14, 15):
Within each subpopulation, oscillators are coupled strongly,
whereas the coupling strength between the two subpopulations
is weaker. We place N identical metronomes (28) with a nominal
beating frequency f on two swings, which can move freely in a
plane (Fig. 1 and Figs. S1–S3). Oscillators within one pop-
ulation are coupled strongly by the motion of the swing onto
which the metronomes are attached. As f is increased, more
momentum is transferred to the swing, effectively leading to
a stronger coupling among the metronomes. A single swing fol-
lows a phase transition from a disordered state to a synchronized
state as the coupling within the population increases (28, 29).
This mimics the synchronization of the gait of pedestrians on
the Millennium Bridge (4) wobbling under the pedestrians’
feet. In our setup, emergent synchronization can be perceived
both aurally (unison ticking) and visually (coherent motion of
pendula). Finally, the weaker coupling between the two swings
is achieved by tunable steel springs with an effective strength κ.

Results
For nonzero spring coupling, κ> 0, we observe a broad range of
parameters in which chimeras (Fig. 1C and Movie S1) and fur-
ther partially synchronized states emerge. To explore this com-
plex behavior quantitatively, we measure the metronomes’ oscil-
lation phase θk, their average frequencies ωk, and the complex

order parameter ZpðtÞ=N−1PN
k=1e

i½θðpÞk ðtÞ−θsynðtÞ�, where p= 1; 2
denotes the left or right population and θsyn is the average phase
of the synchronous population (jZj quantifies the degree of syn-
chronization: jZj≈ 0 for incoherent motion and jZj≈ 1 for syn-
chronous motion).
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To investigate where chimeras emerge in parameter space, we
have systematically varied the effective spring coupling, κ, and the
nominal metronome frequency, f, while ensuring that the metro-
nomes on uncoupled swings synchronize. The long-term behavior
of the system is studied by preparing the experiments with several
initial conditions (SI Text) (12–14): (i) Both populations are de-
synchronized [desync-desync (DD)], or (ii) one population is syn-
chronous and the other is desynchronized [sync-desync (SD) and
desync-sync (DS), respectively]. We start with a fixed frequency
and gradually decrease κ. For sufficiently large κ, the spring is
effectively so stiff that the two swings act like one and metro-
nomes evolve to a synchronized in-phase (IP) motion, such that
the complex order parameters overlap with jZ1;2j≈ 1 (Fig. 2A
and Movie S2). For low κ, we observe that the two metronome
populations settle into synchronized antiphase (AP) motion, where
the order parameters and phases are separated in the complex
plane by 180° with jZ1;2j≈ 1 (Fig. 2C and Movie S3). These syn-
chronization modes correspond to the two eigenmodes of the
swing/spring system. For intermediate κ, however, we observe chi-
meras (Fig. 2B and Movie S1). Whereas one of the metronome
populations is fully synchronized with jZj≈ 1, the other popu-
lation is desynchronized. The trajectory of the order parameter
of the desynchronized population describes a cloud in the com-
plex plane with jZj< 1. The phases of the desynchronized pop-
ulation are spread over the entire interval ½−π; π�, and the time-
averaged frequencies are nonidentical. As we increase κ, numerical
simulations (see below) reveal that this cloud bifurcates off the
AP mode, traverses the complex plane, and eventually collapses
into the stable IP synchronization mode (see Fig. 4B). None of the
metronomes in the desynchronized population is locked to the
synchronized population either, demonstrating truly unlocked
motion. Chimeras were consistently found for both SD and DS
symmetries, ruling out chimeras as a result of asymmetry or pinning

due to heterogeneities. Further, chimeras were not transient, such
that the desynchronized population remained desynchronized (i.e.,
a DS or SD configuration remained for the entire duration of the
experiment, typically lasting for up to 1,500 oscillation cycles).
Chimeras are sandwiched in a region between AP and IP modes

consistently across various metronome frequencies (Fig. 3A).
Remarkably, we also find other asynchronous states, including
phase-clustered states (30) (Fig. S4); a “partial chimera,” where
only a fraction of the asynchronous population is frequency-locked;
and states with oscillation death (28, 31). Additionally, we observe
a region of bistability of chimeras and AP synchronized motion.
Closer to the edge of the IP region, we find a narrow slice where
neither of the metronome populations can achieve synchrony (DD
state): Even when initialized with SD or DS conditions, the system
loses synchrony completely after a transient time.
We have developed a mathematical model (SI Text, Fig. S5,

and Table S1) that we simulated to corroborate our experi-
mental findings and to test situations that cannot be achieved
experimentally, such as large metronome populations or per-
fectly identical frequencies. The two swings are parametrized by
their displacement angles from equilibrium positions, Φ and Ψ;
the metronome pendula are parametrized by the displacement
angles ϕi and ψ i, respectively. The metronomes are described as
self-sustained oscillators with (harmonic) eigenfrequency ω,
damping μm with an amplitude-dependent nonlinearity DðϕiÞ due
to the escapement (28, 29, 31):

€ϕi + sinϕi + μm _ϕi  DðϕiÞ+
ω2

Ω2 cosϕi  
€Φ = 0; [1]

where the terms represent (from left to right) pendulum inertia,
gravitational force of restitution, damping, and the driving swing
inertia, and the dots represent derivatives with respective to time

A

B C

Fig. 1. Experimental setup and measurements. Two swings are loaded with N metronomes each and coupled with adjustable springs. (A) Swing and
metronome displacements are measured by digital tracking of UV fluorescent spots placed on the pendula and swings. (B) N= 1 : Metronomes synchronize in
AP or IP motion. (C) N= 15 : Symmetry-breaking chimera states with one metronome population synchronized and the other desynchronized, or vice versa.
The displacement angles of the pendula on the left and right swings are ϕi and ψ i , respectively.
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τ = ωt. In turn, the swings of length L are described as harmonic
oscillators with eigenfrequency Ω=

ffiffiffiffiffiffiffiffi
g=L

p
and damping μs. A

swing is driven by the metronomes and the neighboring swing,
to which it is coupled with a spring of strength κ:

€Φ +Ω2Φ− κðΨ−ΦÞ+ μs _Φ+
x0
L

XN

k= 1

∂ττ   sinϕk = 0; [2]

where terms (from left to right) are swing inertia, force of res-
titution, spring coupling, friction, and the inertia summed over

all metronomes on the same swing. Whereas κ determines the
interpopulation coupling strength, the global coupling strength
depends on the ratio of the metronome frequency and the
swing eigenfrequency, ðω=ΩÞ2. Using conditions similar to our
experiments (but without frequency spread), chimeras obtained
from simulations (Fig. 2 D and E) and the resulting phase di-
agram (Fig. 3C) agree qualitatively very well with experiments
(quantitative differences are likely due to the ad hoc metro-
nome model and potential discrepancies in parametrization
as discussed in SI Text and Fig. S6). Bistability of fully synchro-
nized (SS) and symmetry-breaking (SD and DS) states is a

A B C D

E

Fig. 2. Chimeras emerge with intermediate spring rate κ in a “competition” zone between two fully synchronous modes. With decreasing κ, we observe
a transition from IP synchronization (A), over chimeras (B), to AP synchronization (C). The transition region also exhibits phase-clustered states and partial
chimeras. (D and E) Simulations share all features of the experimental chimera. Data related to the synchronous and asynchronous populations are coded in
blue and red, respectively. Angular frequencies are normalized with the average frequency of the synchronized population ωsyn. bpm, beats per minute.

A B C

Fig. 3. Phase diagrams from experiments for N= 15 (A) and N= 1 (B) metronome(s) per swing and from numerical simulations with N= 15 metronomes (C)
with metronome frequency f vs. effective spring coupling κ= k=Mðl=LÞ2. IP (red) and AP (blue) synchronization modes surround the chimera parameter region
C (green) and the bistable AP/C region with chimeras and AP synchronization. Symbols represent data points (color shadings are guides only). Region C,
centered around the resonance curve of the swings’ AP mode (yellow dashed line) defined by f · π=60=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 + 2κ

p
, exhibits chimeras and other partially

synchronized states. The bistable region AP/C exhibits chimera-like and synchronized AP states; DD represents a region where neither population synchronizes
fully. For N= 1, we find a similar region of unlocked motion, where the metronomes never synchronize. The phase diagram from numerical simulations for
identical metronomes exhibits the same qualitative structure as the experiment, except that the width of region C is smaller (SI Text). Parameter space in
experiments and simulations was sampled with varying spring coupling κ for metronome frequencies f = 138, f = 160, f = 184, and f = 208 bpm.
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hallmark of the chimera instability (14), which is in distinct con-
trast to other symmetry-breaking scenarios mediated via super-
critical transitions (13). It is therefore interesting to note that
chimera states may coexist with AP synchronization modes in
certain regions of the bifurcation diagram (Fig. 3 A and C).
Notably, when metronomes on each swing synchronize in an

IP or AP mode, one envisages that the swings, together with the
attached metronomes, collectively behave like two “giant” metro-
nomes. These modes correspond to excitations of the eigenmodes
of the swing pair with frequencies Ω (IP) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ+Ω2

p
(AP).

Indeed, for N = 1 metronome per swing (Fig. 1B), we find that
due to momentum transfer, the swing strictly follows the motion
of the attached metronome pendulum: The system behaves like
Huygens’ experiment (i.e., with clocks replaced by metronomes).
The metronomes settle into AP and IP synchronization modes for
weak and strong coupling κ, respectively, as in modern recon-
structions of Huygens’ setup (31). Additionally, we find a small
region where unlocked motion is possible (Fig. 3B).
Generalizing Huygens’ experiment by adding internal degrees

of freedom (i.e., metronomes) on each swing allows for much
richer complex dynamics. A rich tapestry of complex states is un-
covered (Fig. 4) in a transition from the AP to IP synchronization
as the spring coupling κ is increased. In addition to chimeras, these
include phase-clustered states (26): a “clustered chimera,” where
oscillators are attracted to a clustered state but cannot quite attain
frequency locking; a partial chimera, where the asynchronous
population appears partially locked; and a quasiperiodic chimera
(17, 18). The situation is aptly captured by the notion of “more is
different” (32): Additional internal degrees of freedom open
a door to unexpected complex behavior [i.e., unanticipated by
mere extrapolation of simple collective behavior (32)]. Using
Huygens’ term of the “odd sympathy of clocks” (1) to denote
synchrony, the observed asymmetrical behavior might be de-
scribed as an “antipathetic sympathy of clocks.”
Chimeras and other partly synchronous states emerge as a

competition in an intermediate regime between IP and AP syn-
chronization modes: As a result, both modes are destroyed, such
that only one of the giant metronomes wins the tug-of-war and

remains synchronous, whereas the other one is broken apart. The
resulting asymmetry is characterized by the domination of one
giant over the other [i.e., the synchronous population forces the
asynchronous population (33), acting like an energy sink]. Re-
markably, we find that the parameter region with chimera-like
behavior is centered around the resonance curve related to the
swings’ antiphase eigenmode (Fig. 3A): Near resonance, the fabric
of uniform synchronization is torn.

Discussion
By devising a mechanical system composed of just two swings, a
spring, and a number of metronomes (28), we have extended
Huygen’s original experiment (1, 31) and demonstrated how chi-
meras emerge in the framework of classical mechanics. Recent
experiments (26, 27) could only produce chimeras by exploiting
sophisticated computer-controlled feedback, and the time delay
of the coupling had to be carefully crafted in addition to tuning its
strength; by contrast, in our realization, chimeras emerge gener-
ically using merely a spring, without any need to adjust parameters
other than the coupling strength. Notably, our setup is composed
of basic mechanical elements, such as inertia, friction, and spring
rate, which have exact or generalized analogs in other areas, such
as electronic (6, 34), optomechanical (35), chemical (7), and
icrobial systems or genetic circuits (36). The model we propose
shows that the complex synchronization patterns found in the
experiments are described by elementary dynamical processes
that occur in diverse natural and technological settings. This
raises the question of whether chimeras may have already been
observed in such systems but remained unrecognized as such. For
instance, our model equations translate directly to recent theo-
retical studies of synchronization in power grids (37–39) and
optomechanical crystals (40, 41). Consequently, as power grid
network topologies evolve to incorporate growing sources of re-
newable power, the resulting decentralized, hierarchical networks
(37) may be threatened by chimera states, which could lead to
large-scale partial blackouts and unexpected behavior. On the
other hand, we envision that multistable patterns of synchrony
and desynchrony (19) can be exploited to build on-chip memories

Fig. 4. Traversal of order parameter cloud with increasing spring coupling κ. A transition through a rich spectrum of chimera states becomes evident.
Numerical simulations are carried out with N= 64 metronomes (for parameters see SI Text). As κ increases, the complex order parameter Zp bifurcates off from
the AP mode at 180° and travels to the right, where it snaps into the IP synchronization mode at 0°. (Top) Complex order parameter Z is displayed. (Middle)
Magnitude jZpj is displayed. (Bottom) Angular frequencies, normalized with the average frequency of the synchronized population ωsyn, are displayed. The
synchronized population is shown in blue, and the desynchronized population is shown in red.
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and computers based on arrays of micromechanical devices (35).
We expect the physical mechanisms that we uncovered here will
have important and far-reaching ramifications in the design and
use of such technologies and in understanding chimera states
in nature.

Materials and Methods
Experiments. Two swings are suspended by four light hollow aluminum rods
with a length of 50 cm (outer and inner diameters are 10 mm and 9 mm,
respectively). The swings are attached to the rods via low-friction ball
bearings to ensure smooth motion of the swings. The upper rod ends are
attached in the same way on a large rigid support frame. The distance be-
tween the support frame and the board is set to L= 22 cm. The motion of the
two swings is constrained so that it can occur, to high precision, only in the
x-y plane. Each swing is made of a 500-mm × 600-mm × 1-mm perforated
aluminum plate. The total weight of each plate is 915 ± 4 g. Each swing is
loaded with N= 15 metronomes with a weight of 94 g. The total weight of
the swing and metronomes is M= 2:3 kg. Two precision steel springs
(Febrotec GmbH; spring constant k = 34 N/m) are firmly attached with
clamps to the two adjacent swing rods (Fig. 1A) at a distance l above the
pivot point. Adjusting the spring lever l changes the effective spring
strength κ= k=Mðl=LÞ2. An experiment is started with a careful symmetry
check of the system, by ensuring that the initial friction μs is the same on

both swings. The metronome’s nominal frequency is set to identical values
ωn. We then connect the two swings with the spring firmly set at a dis-
tance l above the pivot points. The motion of the metronomes and the
swings is video-recorded under UV illumination using a Nikon D90 camera
mounted with an 18- to 55-mm DX format lens. Each experiment is re-
peated with inverted roles of the swings (i.e., a DS experiment is followed
by an SD experiment), such that the left-to-right symmetry is checked
thoroughly.

Simulations. Simulations were carried out with identical metronomes until
a stationary state was reached (typically, ∼2,000 oscillation cycles). The phase
diagram (Fig. 3C) was obtained by fixing the nominal metronome frequency f
and then gradually increasing the effective spring rate κ (using similar
parameters as in the experiment and N= 15 metronomes per swing). For each
parameter step, synchronous IP and AP states were continued quasiadiabati-
cally, whereas simulations resulting in chimera-like states were reinitialized
with randomized phases in one of the populations (SI Text).
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