








association with the SSU. The other segments enhance
the stability and efficiency of the LSU by embracing the
PTC and further extending the exit tunnel.

Phase 5: Acquisition of translocation function. Inclusion of AESs
29–39 adds essential components of the modern energy-
driven translational machinery: the L7/L12 stalk and
central protuberance (28, 29), and binding site (sarcin–
ricin loop) for elongation factors G and Tu (28, 29).
The tunnel is further extended.

Phase 6: Late tunnel extension. Further expansion of the LSU by
inclusion of AESs 40–59 results in the maturation of
common core of the LSU. In the final phase of pro-
karyotic ribosomal evolution (Fig. 2A and SI Appendix,
Fig. S12A), the exit tunnel is extended. A majority of
elements added here are located at the ribosomal sur-
face and interact with ribosomal proteins.

Phase 7: Encasing the common core (simple eukaryotes). Eukary-
otic expansion segments are acquired and previous
AESs are elongated. This eukaryotic-specific rRNA
combines with eukaryotic-specific proteins (9) (Fig.
2B and SI Appendix, Fig. S12B) to form a shell around
the common core.

Phase 8: Surface elaboration (complex eukaryotes). Metazoan
ribosomes are decorated with “tentacle-like” rRNA ele-
ments that extend well beyond the subunit surfaces (8).
These tentacles (Fig. 2C and SI Appendix, Fig. S12C),
are fundamentally different in structure and function
than common core rRNA. Metazoan expansions appear

to enable elaborate control, delivery, and complexity,
and are thought, for example, to enable communica-
tion between the mRNA exit in the SSU and the exit
tunnel terminus in the LSU, and to facilitate interactions
with eukaryotic-specific factors involved in membrane
localization.

Conclusions
Here, we analyze changes in ribosomal size, structure, and com-
plexity over the course of ribosomal evolution. We observe distinct
patterns in conformation and interactions of rRNA where ex-
pansion elements of S. cerevisiae join the common core. We tab-
ulate the expansions and analyze the rRNA structure of each site.
The analysis reveals patterns of rRNA conformation that we call
insertion fingerprints. We then extrapolate backward, by identi-
fying insertion fingerprints within the common core. Identification
of insertion fingerprints within the common core allows us to
construct a stepwise model of the evolution of the common core.
Ultimately, this approach allows us to infer some of the earliest
evolutionary steps in the formation of the peptidyl transferase
center, at the very dawn of ribosomal evolution.
In our model, the LSU has evolved in distinct phases. This

process started with the formation of the P site, possibly in an
RNA world, and continues today in eukaryotes. A unifying theme
of LSU evolution is the continuous extension, stabilization, and
elaboration of exit tunnel structure and function. The exit tunnel
is formed, extended, stabilized, and elaborated continuously in
nearly all phases of ribosomal evolution.
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Fig. 6. rRNA evolution mapped onto the LSU rRNA secondary structure. The common core is built up in six phases, by stepwise addition of ancestral
expansion segments at sites marked by insertion fingerprints. (A) Each AES is individually colored and labeled by temporal number. AES colors are ar-
bitrary, chosen to distinguish the expansions, such that no AES is the color of its neighbor. (B) Accretion of ancestral and eukaryotic expansion segments is
distributed into eight phases, associated with ribosomal functions. Phase 1, rudimentary binding and catalysis (dark blue); phase 2, maturation of the PTC
and exit pore (light blue); phase 3, early tunnel extension (green); phase 4, acquisition of the SSU interface (yellow); phase 5, acquisition of translocation
function (orange); phase 6, late tunnel extension (red). Some AESs appear to be discontinuous on the secondary structure and so are labeled twice. A
description of each AES and their partitioning into phases is given in SI Appendix, Table S3. The 3D structure of each phase is shown in SI Appendix,
Fig. S11.
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The model of LSU origins and evolution described here is more
fine grained than previous models but is in essential agreement
with them, despite different assumptions and types of input data.
Harvey and coworkers compared secondary structures and
sequences across multiple species, identifying the RNA compo-
nents of the “minimal ribosome” (11). Fox analyzed density of
molecular interactions and interconnectivities (24). Bokov and
Steinberg developed a powerful model by analyzing A-minor
interactions (25). Williams and coworkers treated the LSU as
a growing onion (12). Where they overlap, our stepwise model
here corresponds well with each of these previous models, al-
though it provides a more rigorous definition of the ancestral
expansion segments and addresses the origin of the PTC. The
cumulative effect of the first four initial expansions (Fig. 5) gives
a structure that is strikingly similar to an ancestral PTC proposed
independently by Yonath and coworkers (30, 31). Those inves-
tigators suggested rRNA components of the PTC as an ancient
catalytic heart of the common core. Some of the AESs proposed

here correspond to rRNA “elements” that were used to con-
struct the ribosome in the Bokov–Steinberg model (25).
In our model, rRNA has evolved by analogous processes

throughout its history, from the origin of the PTC, through the
common core, to highly expanded rRNAs in complex metazoans.
We also show that the size of the LSU rRNA correlates better with
biological complexity than does genome size (C value), however
complexity is defined. We suggest that the size of the LSU rRNA
might be a universal proxy of biological complexity.

Materials and Methods
Alignments and Phylogenetic Trees.We aligned complete LSU rRNA sequences
from 135 organisms intended to represent the broadest sparse sampling of
the phylogenetic tree of life, including all three domains of life. The align-
ment is provided in FASTA format (SI Appendix, Dataset S2). The phyloge-
netic tree was generated from sTOL.

Secondary Structures. Secondary structures of LSU and SSU rRNAs are taken
from our public gallery (http://apollo.chemistry.gatech.edu/RibosomeGallery/)
and data are mapped by RiboVision (32–34).

Three-Dimensional Structures. Three-dimensional structures of ribosomal
particles were obtained from the Protein Data Bank (PDB) database [PDB IDs
1JJ2 (2), 3R8S, 4GD1 (35), 3U5B, 3U5C, 3U5D, 3U5E (25), 3J38, 3J3C, 3J39, 3J3E
(8), 3J3A, 3J3B, 3J3D, and 3J3F]. Local and global superimpositions were
performed using the built-in cealign functionality of PyMOL (36). Details are
available in SI Appendix, SI Materials and Methods.
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Table 1. AESs within the PTC

Expansion
segments Helices

Nucleotide numbers
(E. coli)

AES 1 H74, H75, H89 2061–2092; 2226–2245; 2435–2501
AES 2 H80 2246–2258; 2427–2434
AES 3 H90, H91 2053–2060; 2502–2546; 2567–2576
AES 4 H73, H93 2043–2052; 2577–2629
AES 5 H93 2547–2566
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