




Although TP is essential for bacterial growth, the authors ac-
knowledge that treated wastewater effluent includes high levels of
both E. coli and TP. However, as stated above, WWTPs were not a
driving factor of microbial water quality in the studied watersheds.
Phosphorus, like E. coli, may be derived from sediments in the
rivers, soil, plants, animal wastes, or manure and thus, unlike the
B. theta, is not exclusive to fecal pollution.
The full watershed CART outputs and correlation analysis

indicated B. theta concentrations were strongly associated with
total numbers of septic systems in the watershed (r = 0.364, P =
0.002) and in the 60-m buffer (r = 0.357, P = 0.004). B. theta
concentrations were not correlated with septic system density in
the watershed (P = 0.361) or in the 60-m buffer (P = 0.520).
Interestingly, the total number of septic systems in the watershed
accounted for 36% of the B. theta concentration variance with a
threshold count of 1,622 systems per watershed, as shown in Figs.
2B and 3. The snapshot sampling strategy used in this study fo-
cused on a spatial composite of the watersheds near the drainage
point toward the Great lakes. Thus, the total number of people on
septic tanks equates to the level of feces entering each watershed,
and these levels are potentially dominated by failing septic systems
contributing high concentrations of bacteria to nearby water sys-
tems. A Michigan health department reported a 26% on-site
wastewater failure rate during time of sale or transfer inspections
that discharged an estimated 65,000 gallons of untreated fecal
waste each year to nearby water bodies (39). Future watershed-
based studies should include analysis of total septic systems in the
watershed and septic density, because it would be possible to
overlook failing septic systems if the sample size were small or the
focus were only on septic density. Additional efforts aimed at the
condition of septic systems, their ability to remove bacteria, and
microbial transport to nearby surface waters are required.
The direct and significant correlation between estimated num-

ber of septic systems and the human-specific marker B. theta in
water (Fig. 3) illustrates a major issue for water quality of Mich-
igan’s streams and rivers, with an estimated 1.4 million on-site
septic systems statewide (35, 40). In this study, the overall B. theta
geometric mean was one log10 unit higher than secondary treated
sewage effluent, whereas the highest measured concentrations
were 1.5 logs higher than biologically treated septage effluent (20).
Interestingly, when the CART analysis considered the entire up-
stream drainage area, including lakes, 2.5 times fewer septic sys-
tems were required to produce B. theta levels similar to when these
drainage areas were restricted to downstream of the nearest
lake, potentially indicating increased failure rates of septic

systems surrounding lakes compared with rivers (see Supporting
Information for details). Habteselassie et al. (41) identified that
surface water and groundwater near failing on-site wastewater
treatment systems contained higher concentrations of E. coli and
enterococci than water surrounding properly functioning on-site
wastewater treatment systems (P < 0.001). Combined, these
results illustrate the importance and need for responsible de-
velopment and septic system maintenance along lake and river
riparian zones to protect water quality. Future analysis should
include incremental spatial assessment of B. theta with respect
to septic systems in watersheds to assess the fate and transport
of bacteria from septic systems and define their acute/chronic
impacts on water quality.
E. coli and B. theta Z-scores [(observed – mean)/SD] were

compared using CART, as shown in Fig. 4, to identify the char-
acteristics that could differentiate between E. coli and B. theta
concentrations. Positive values of the Z-score differences occur
when E. coli concentrations are higher, relative to their population
mean, than B. theta concentrations. Negative values imply the
opposite, with relatively higher B. theta concentrations. In catch-
ments with discharge <0.66 m3·s−1 and with fewer than 294 septic
systems in the 60-m buffer, E. coli concentrations were much
higher than those of B. theta. In contrast, B. theta concentrations
were much higher than those of E. coli in rivers with discharge
>0.66 m3·s−1, particularly in catchments with dissolved organic
carbon >5.4 μg·L−1. E. coli, which occurs in the feces of all warm-
blooded mammals and birds, has been shown to persist and regrow
in the environment under some conditions and has been associated
with suspended particles that have low settling rates (42–45).
Therefore, in watersheds with low discharge it is possible that
E. coli can attach to particles and persist longer than B. theta, which
is an anaerobic organism with a faster decay rate in rivers (46).
We compared the concentrations and loads of E. coli and

B. theta across all sites (Fig. S2). No statistically significant re-
lationship was identified between E. coli and B. theta concen-
trations (r = 0.18; P = 0.16). Bacterial entry to rivers during
baseflow seems to be occurring from some of the same diffuse
sources, including septic systems. The comparison of E. coli
versus B. theta concentrations illustrated that each of these mi-
croorganisms was entering rivers from similar sources (i.e., dif-
fuse sources such as septic systems) (Fig. 2). However, each
organism was influenced by different environmental parameters
as identified by the Z-score CART analysis (Fig. 4). E. coli was
ubiquitous in most rivers and concentrations were primarily as-
sociated with TP and K levels. This study indicates that B. theta
can be used as a source-tracking marker to investigate diffuse
sources of human-derived contaminants from septic systems
under baseflow hydrologic conditions at watershed scales.

A B

Fig. 2. CART analyses for (A) E. coli and (B) B. theta concentrations as de-
pendent variables and land use, nutrient, chemical, hydrologic, and environ-
mental parameters as independent variables in watersheds. PRE, proportion of
reduction in error.
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Fig. 3. B. theta versus septic systems illustrating the CART output from the
first split of Fig. 2B.
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Conclusions
To address impaired waters and restore them to designated uses,
the process for total maximum daily loads (TMDLs) has been
developed under the Clean Water Act. According to Stiles (47)
there are currently 65,000 TMDLs and 43,000 listings that need
to be addressed. Many stretches of water systems are impaired
due to fecal pollution and E. coli, but there have been no
established approaches or tools to identify nonpoint sources.
This study provides a path forward to assess and ultimately im-
prove water quality at large scales. More importantly, this study
provides reference conditions for a large number of watersheds
that, in the event of major landscape disturbance, could be used to
measure remediation progress. Using a synoptic sampling ap-
proach for regional water quality assessment, this study found that
human fecal contamination was prevalent under baseflow condi-
tions. Baseflow in the study watersheds was generally dominated
by groundwater and not by wastewater treatment effluent. Results
suggest a regional E. coli reference condition below the current
USEPA freshwater recreational criterion could be established.
However, identifying specific sources of fecal contamination in
rivers cannot be achieved using ubiquitous bacteria, such as E. coli.
Assessing water quality using solely E. coli may mislead water
quality managers and severely limit the ability to remediate im-
paired waterways. However, microbial source-tracking markers,
such as the human-specific B. theta marker, can provide a more
refined tool to identify the impacts of nonpoint sources of human
fecal pollution, which could help prioritize restoration activities
that should be implemented at watershed scales. The high vari-
ability of water quality measurements illustrates complex relation-
ships between bacteria and landscape, geochemical, and hydrologic
properties. The influence of septic systems in riparian zones also
indicates that additional localized control measures, including
septic system maintenance and construction, should be imple-
mented to protect water quality and human health.

Materials and Methods
Study Area. This study investigated 64 watersheds draining Michigan’s Lower
Peninsula to the Great Lakes (Fig. S3). Watersheds were selected using the
following criteria: (i) the 30 largest watersheds that represent >80% of
Michigan’s Lower Peninsula land area and (ii) 34 smaller watersheds ran-
domly selected across the state from locations near their outlet to the lake.
All sampling sites were located at bridge crossings and selected on the cri-
teria that each was reasonably accessible, had adequate flow, river water
dominated discharge, and the maximum amount of upstream land use was
captured while meeting the above criteria.

Water Sample Collection. A synoptic sampling scheme was used to capture
water quality characteristics under a single flow condition (i.e., baseflow) across
broad spatial areas (14). Compared with long-term comprehensive investig-
ations, this approach reduces the number of samples, cost, and personnel re-
sources required to address pollution sources while providing essential
information missed during routine monitoring.

Grab samples were collected from each river sampling site between Oc-
tober 1–13, 2010, which was chosen as a groundwater-dominated baseflow
period based on historical hydrographs and antecedent precipitation.
Groundwater-driven baseflow is critical to the preservation of water quality
and quantity in the Great Lakes and provides year-round support for aquatic
habitats. Before sampling each watershed, meteorological conditions were
monitored to ensure that no significant precipitation had occurred within
several days and hydrographs from nearby US Geological Survey (USGS)
stream gauges were inspected to check that sampled rivers were at base-
flow. October was chosen for the sampling period because the late growing
season baseflow period is least likely to have large variability in water
quality because flows are dominated by groundwater in the region. There is
variability in water quality between baseflow periods (i.e., fall versus sum-
mer), but this variability is small relative to the variability between baseflow
and other periods due to overland flow and dilution effects (48, 49). Water
temperature (degrees Celcius), specific conductance (microsiemens per cen-
timeter), and dissolved oxygen (milligrams per liter) were measured on-site
using YSI 600R Sonde (YSI Incorporated). Field samples were placed on ice in
coolers and transported to Michigan State University for other analyses,
including bacterial testing (described below) within 24 h.

Water Analysis. Each sample was assayed for water chemistry as summarized
in Table S2. The methods for assaying chemicals and nutrients are described
in Table S3. E. coli analyses were performed within 24 h of collection using
IDEXX Colilert Quanti-Tray 2000. Following incubation at 35 °C (±0.5 °C) for
24 h (±2 h), fluorescent wells were reported positive for E. coli, and reported
as MPN per 100 mL. E. coli C-3000 (American Type Culture Collection 15597)
was used as positive control for verification of media integrity. Sterile water
was used for negative controls to verify method integrity. E. coli measure-
ments below detection limits (1.0 MPN·100 mL−1) were assigned the value of
the detection limit.

Samples were analyzed for the human-specific marker B. theta, which has
been shown to have a high sensitivity comparable to other human-associ-
ated markers in a multilaboratory evaluation (50). Compared with B. theta,
HF183 and other source markers had greater false positive rates in animal
feces collected in the same region as our study area (21). BacHum exhibited
an even greater false positive rate than HF183 (51). Laboratories associated
with our team and others have demonstrated that B. theta is a suitable
human-specific marker and is related to human health outcomes (19–21, 52).

Analysis of the human-specific marker B. theta α-1–6 mannanase (5′CATC-
GTTCGTCAGCAGTAACA3′; 5′CCAAGAAAAAGGGACAGTGG3′) was performed
according to Yampara-Iquise et al. (19), specifically by filtering 900 mL of water
through a 0.45-μm hydrophilic mixed cellulose esters filter. Each filter was
placed into a 50-mL centrifuge tube containing 20 mL of sterile phosphate-
buffered water, vortexed, and centrifuged (30 min; 4,000 × g; 21 °C). Eighteen
milliliters were decanted from the tube and the remaining eluent and pellet
were stored at −80 °C. DNAwas extracted from 200 μL of the thawed pellet via
QIAamp DNA mini kit protocol. Quantitative PCR (qPCR) was performed on
extracted DNA following Yampara-Iquise et al. (19) with a probe modification
(20) using a Roche Light-Cycler 2.0 Instrument (Roche Applied Sciences). Each
B. theta assay was carried out with 10 μL of LightCycler 480 Probe Mastermix
(Roche Applied Sciences), 0.4 μL forward and reverse primers, 0.2 μL probe
62 (6FAM-ACCTGCTG-NFQ; Roche Applied Sciences Universal Probe Library),
1.0 μL BSA, 3.0 μL nuclease-free water, and 5.0 μL of extracted DNA and pro-
cessed in triplicate. The qPCR analyses included a 15-min, 95 °C preincubation
cycle, followed by 50 amplification cycles, and a 0.5-min 40 °C cooling cycle. A
diluted plasmid standard was included during each qPCR run as a positive
control and molecular-grade water was used in place of DNA template for
negative controls. One copy of the targeted B. theta gene is assumed present
per cell, and thus one gene copy number corresponded to one equivalent cell
(19, 20). B. theta gene copies were converted to CE and reported as qPCR
CE·100 mL−1.

Climate and Hydrology. Hourly precipitation data were extracted from the
Grand Rapids, Gaylord, and Detroit (Michigan) Next Generation Radar
(NEXRAD) stations through the National Climate Data Center (www.ncdc.
noaa.gov/nexradinv), with a base reflectivity of 0.50°, an elevation range of
124 nautical miles, and 16-km2 cells. Hourly precipitation averages across
each watershed were used to calculate total rainfall weighted by the

Fig. 4. CART of E. coli and B. theta Z-scores illustrating conditions associ-
ated with different concentrations between these two microbes. PRE, pro-
portion of reduction in error.
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proportion of each NEXRAD cell within the sampled watershed. Pre-
cipitation was categorized into cumulative hourly totals (millimeters) before
sample collection at intervals of 6, 12, 18, and 24 h and 2, 3, 4, 6, and 8 d,
reported as millimeters per time before sample collection.

Real-time river dischargewasmeasured at each site during sample collection
using an Acoustic Doppler Current Profiler (53), colocated USGS stream gauges
(waterwatch.usgs.gov), or current meter via wading following USGS protocol
(54). River discharge is reported as cubic meters per second.

Land Use. Watersheds were delineated and then land use and septic system
statistics were calculated for each watershed using Esri ArcMap GIS software
(Table S4). The spatial analyst watershed tool was used to develop surface
watersheds for each sampling point at 1 arc-second. Two watersheds were
defined for each river site, referred to in this paper as full watersheds, which
include the entire upstream drainage area (n = 64), and reduced watersheds,
which only include drainage areas upstream of the sampling site to the
nearest lake, reservoir, or pond (n = 52). The full watershed analysis (n = 64)
included 12 sites that were at or near lake outlets, resulting in significantly
smaller watersheds (average = 108 km2) than the other 52 watersheds (av-
erage = 366 km2). These 12 sites were removed in the reduced watershed
analysis because it was originally hypothesized that longer retention time in
the lentic water systems would likely reduce microbe concentrations owing
to environmental decay. A digital map of land cover from 30-m resolution
Landsat imagery and the National Land Cover Database (NLCD 2006; www.
mrlc.gov/nlcd2006.php) was used to define land use in each watershed and
buffer. Land use was categorized using the NLCD classification system with
16 categories and seven categories using the Anderson Level 1 Land Cover
Classification System (55); Table S5 describes the Anderson classifications and
equivalent NLCD categories. A 60-m riparian buffer was applied to streams
in both full and reduced watersheds because land parcels are generally lo-
cated adjacent to roads and require a buffer between surface waters and
septic tanks. The average septic system setback from surface waters in
Michigan is 15 m. Additionally, the 60-m riparian buffer ensured all riparian
land uses were accounted for if the land use/river/septic system GIS layers
were not completely matched under the 30-m resolution.

A map of households that likely use on-site septic systems to treat waste-
water was previously developed for this study region (35). Briefly, septic system
totals and locations were estimated following the cumulative examination of
WWTP infrastructure, incorporated municipality areas, household location
according to 2010 census blocks, 2006 NLCD and road layers, and residential
drinking water well information. Estimated septic system numbers (per
watershed) and densities (per square kilometer) in each watershed and
60-m-wide buffer around surface water bodies were calculated for the
64 river systems.

Estimates of total population and population relying onWWTPs for water
treatment were performed for each watershed and 60-m buffer. The total
population in each watershed was estimated by multiplying the number of
households (based on 2010 census data, described above during septic system
estimates) by the average household size in each census block. The number of
people relying on WWTPs was estimated by overlaying census block in-
formation and wastewater treatment plant service area boundaries. Addi-
tionally, the USEPA Discharge Monitoring Report (DMR) Pollutant Loading
Tool (cfpub.epa.gov/dmr/ez_search.cfm) was used to estimate the ratio of
average annual WWTP effluent to measured baseflow. A full description of
this method is provided in Supporting Information.

Statistical Analysis. A constant value of 1 was added to E. coli and B. theta
concentrations before log transformation and analysis. Soil hydraulic con-
ductivity values were log10-transformed before statistical analyses. Spear-
man correlation tests were used to examine relationships among physical,
geochemical, and microbial measurements. Descriptive statistics were per-
formed using IBM SPSS Statistics software (Version 19.0) with a significance
threshold of (α) 0.01.

CART analysis was used to compare E. coli and B. theta (dependent var-
iables) data to the independent geochemical, hydrologic, environmental,
and land use variables. CART has been used to investigate pathogenic bac-
teria and parasite relationships with environmental and land use factors
(56), to classify lakes based on chemistry and clarity (57), and to predict the
occurrence of fecal indicator bacteria with respect to physiochemical vari-
ables (58). CART was selected because it allows for robust nonlinear model
development using multiple potentially interacting predictor variables (59)
that splits dependent variables into categories based on the influence of
independent variables. Following previously published methods (56, 57),
CART recursively split dependent variables using a recursive partitioning
algorithm (rpart) and a 10-fold cross-validation criterion. The 10-fold cross-
validation approach breaks all data into 10 subsets and calculates the split
based on 9 of the 10 subsets. This method is used for each group until
reaching a minimum stopping criterion of five observations per subgroup.

Fully developed CART outputs often required pruning to remove in-
significant splits and ensure significant variable associations were not missed
due to the splitting and stopping criteria (60). We first pruned CART outputs
using the 1-SE rule (61–63), and, if needed, a subsequent pruning step was
performed if splits did not reduce error by 5% or more. This rule minimized
the cross-validated error of the model, which has been shown to produce
optimal sized trees that are stable across replications (61, 64).

Detailed CART outputs were investigated to identify competitor and sur-
rogate variables for each node. Competitor splits are ranked according to the
reduction in model error from other potential splits, whereas surrogate splits
are ranked according to how similar the resultant groups are relative to the
primary split groups.Model accuracywas assessedby summing theproportional
reduction of error from each split. All CART analyses were performed using the
R software system (R Foundation for Statistical Computing).

To compare concentrations of the two organisms at each site relative to
the average concentration of each organism, the Z-score of each sample was
calculated. Z-scores [(observed – mean)/SD] for E. coli and B. theta were
calculated in R using the “scale (dataset, center=TRUE, scale=TRUE)” com-
mand. This is defined as the sample concentration minus the mean of the
population divided by the SD of the population. In this case, the Z-score of
the log-transformed concentration was calculated. Positive Z-scores indicate
samples with concentrations greater than the population mean, whereas
negative Z-scores indicate the opposite. A CART analysis of the difference in
Z-scores, calculated as E. coli – B. theta, was then performed using the same
set of predictor variables in the single-organism models.
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