Ryanodine receptor fragmentation and sarcoplasmic reticulum \(\text{Ca}^{2+} \) leak after one session of high-intensity interval exercise

Nicolas Placea,1, Niklas Ivarssonb,1, Tomas Venckunasc,1, Daria Neyrouda,d, Marius Brazaitis1, Arthur J. Chengb, Julien Ochalaa, Sigita Kamanduliska, Sebastien Girardd, Gintautas Volungevi\c{c}ius1, Henrikas Pauz\acute{a}s1, Abdelhafid Mekideche9, Bengt Kaysera, Vicente Martinez-Redondob, Jorge L. Ruasb, Joseph Brutonb, Andre Truffert9, Johanna T. Lannerb, Albertas Skurvydasc, and Håkan Westerbladb,c,2

aInstitute of Sport Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; bDepartment of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden; cSports Science and Innovation Institute, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; dInstitute of Movement Sciences and Sports Medicine, University of Geneva, 1205 Geneva, Switzerland; eCentre of Human and Aerospial Physiology Sciences, King’s College London, London SE1 1UL, United Kingdom; fSurgery Department, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania; and gElectroneuromyography and Neuromuscular Disorders Unit, Department of Clinical Neurosciences, Geneva University Hospital, 1211 Geneva, Switzerland

Edited by Andrew R. Marks, Columbia University College of Physicians and Surgeons, New York, NY, and approved October 5, 2015 (received for review April 13, 2015)

High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) \(\text{Ca}^{2+} \) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR \(\text{Ca}^{2+} \) leak at rest, and depressed force production due to impaired SR \(\text{Ca}^{2+} \) re-lease upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber \(\text{Ca}^{2+} \)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.

Significance

High-intensity interval training (HIIT) has become popular because it is a time-efficient way to increase endurance. An intriguing and so-far-unanswered question is how a few minutes of HIIT can be that effective. We exposed recreationally active men to one session of three to six sets of 30-s high-intensity cycling exercise. Muscle biopsies taken 24 h later showed an extensive fragmentation of the sarcoplasmic reticulum (SR) \(\text{Ca}^{2+} \) channels, the ryanodine receptor 1 (RyR1). In isolated mouse muscle fibers, this fragmentation was accompanied by increased SR \(\text{Ca}^{2+} \) leak, which can trigger mitochondrial biogenesis. The HIIT-induced RyR1 fragmentation did not occur in muscles exposed to antioxidant, which offers an explanation for why antioxidants blunt effects of endurance training.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1N.P., N.I., and T.V. contributed equally to this work.

2To whom correspondence should be addressed. Email: hakan.westerblad@kis.se

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507176112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1507176112

PNAS Early Edition | 1 of 6
training (21–25). HIIT has been shown to effectively stimulate mitochondrial biogenesis in skeletal muscle and increase endurance in untrained and recreationally active healthy subjects (22, 26), whereas positive effects in elite endurance athletes are less clear (21, 27, 28). Moreover, HIIT improves health and physical performance in various pathological conditions, including cardiovascular disease, obesity, and type 2 diabetes (29, 30). Thus, short bouts of vigorous physical exercise trigger intracellular signaling of large enough magnitude and duration to induce extensive beneficial adaptations in skeletal muscle. The initial signaling that triggers these adaptations is not known.

In this study, we tested the hypothesis that a single session of HIIT induces ROS-dependent RyR1 modifications. These modifications might cause prolonged force depression due to impaired SR Ca\(^{2+}\) release during contractions. Conversely, they may also initiate beneficial muscular adaptations due to increased SR Ca\(^{2+}\) leak at rest.

Results

HIIT Causes Fragmentation of RyR1 in Recreationally Active Men. In an initial experiment to test whether a brief period of HIIT exercise can induce long-lasting changes in muscle function, recreationally active males (SI Appendix, Table S1) performed three 30-s all-out bouts of cycling (i.e., only 90 s of total exercise time) with 4-min rest between bouts. Subsequent contractions produced by electrical stimulation of knee extensors revealed a marked length-independent force decrease, especially at low (10 Hz) stimulation frequency, which was not fully recovered even 24 h after the brief HIIT exercise (SI Appendix, Fig. S1A). Thus, these initial experiments show that as little as three 30-s intervals of HIIT exercise can induce long-lasting impairments in contractile function.

In the next series of experiments, recreationally active males performed six 30-s all-out cycling bouts, and biopsies were taken from the vastus lateralis muscle before and at ~10 min and 24 h after the cycling bouts (SI Appendix, Fig. S1B). To assess changes in RyR1 induced by this HIIT exercise, Western blot experiments were performed with a polyclonal antibody targeted against the last nine amino acids on the C-terminal end of human RyR (no. 5029; gift from Andrew Marks, Columbia University, New York). These experiments showed no obvious change in RyR (no. 5029; gift from Andrew Marks, Columbia University, New York). These experiments showed no obvious change in RyR1 directly after the HIIT exercise, but 24 h later, only ~15% remained as the full-sized RyR1 monomer, and instead major fragments emerged at ~375, 80, and 60 kDa (Fig. 1 A and B). Similarly, a commercially available mouse monoclonal anti-RyR1 antibody (ab2868; Abcam) showed a shift from the full-length RyR1 monomer to a ~375-kDa fragment 24 h after exercise (SI Appendix, Fig. S2); note that the ab2868 antibody did not detect the smaller ~80- and 60-kDa fragments, possibly because the cleavage sites then interfered with the binding site of this antibody. Conversely, neither the t-tubular voltage sensor (the dihydropyridine receptor; DHPR), the SR Ca\(^{2+}\) pump (SERCA2), the SR Ca\(^{2+}\) buffer (calsequestrin 1; CSQ1), nor the structural proteins dystrophin (DMD) and actin showed any change in expression or localization (Fig. 1 B and C).

Western blotting revealed neither decreased RyR1 expression nor fragmentation at 1 and 24 h after the marathon race (SI Appendix, Fig. S4A). However, RyR1 immunoprecipitation experiments revealed a marked dissociation of the channel-stabilizing subunit calstabin1 (also known as FKBP12; SI Appendix, Fig. S4B), which is consistent with previous results obtained after strenuous endurance exercise and in muscle pathologies and which has been linked to increased RyR1 Ca\(^{2+}\) leakage (6–13). Thus, the extensive challenge to muscle integrity caused by marathon running resulted in destabilizing changes to RyR1, but no fragmentation.

HIIT Causes Force Depression Due to Defective SR Ca\(^{2+}\) Release in Muscle Fibers. Tentative mechanisms underlying the decrease in contractile performance during and after the HIIT exercise were assessed both at the neuronal and muscular levels (SI Appendix, Fig. S5). Mean power output decreased as the series of cycling bouts progressed, being decreased by ~25% in the sixth bout, and this decrease occurred despite constant neuronal activation (SI Appendix, Fig. S6). Maximum voluntary contraction (MVC) force was decreased by ~40% immediately and 5 min after the repeated cycling bouts, and again this decrease was not accompanied by any reduction in neuronal activation (SI Appendix, Fig. S7).

We used supramaximal electrical stimulation of the femoral nerve to assess knee extensor muscle function without influence from neuronal activation. The force induced by 10- and 100-Hz doublet stimulation as well as the rate of twitch force development were substantially decreased immediately and 5 min after the six cycling bouts (SI Appendix, Fig. S8 A–C). Conversely, the membrane excitability seemed unaffected by the HIIT exercise, as judged from measurements of the muscle compound action potential (M wave) in response to a single electrical impulse (SI Appendix, Fig. S8D). Intriguingly, no statistically significant differences from prefatigue values were observed when the above MVC contractions and experiments with electrical femoral nerve stimulation were performed 24 h after exercise—i.e., at the time when RyR1 Western blots show extensive fragmentation.

Thus far, our results show a force depression induced by a single session of HIIT that is due to defective function within the muscle fibers. The close to normal action potential characteristics (i.e., virtually unaltered M-wave properties) after exercise indicate that the force depression is due to factor(s) intrinsic to the muscle fibers—i.e., decreased SR Ca\(^{2+}\) release and/or impaired myofibrillar contractile function. To distinguish between these two possibilities, we measured the force produced during direct stimulation of the contractile proteins in skinned fibers.
obtained from *vastus lateralis* muscle biopsies taken before and ~10 min after the repeated cycling bouts. The results showed no HIIT exercise-induced change in maximum Ca\(^{2+}\)-activated force or myofibrillar Ca\(^{2+}\) sensitivity (*SI Appendix*, Fig. S9). Note that the cycling performed during the HIIT exercise involved mainly concentric contractions. A long-lasting force depression was observed after unaccustomed eccentric contractions, but such contractions resulted in severe impairments in myofibrillar contractility and a shift of the active force-length relationship toward longer lengths (31); neither of these defects were observed after the present HIIT exercise (see also *SI Appendix*, Fig. S14). Thus, contractile function of the myofibrillar proteins was not impaired after the HIIT exercise, and the mechanism behind the force depression can be narrowed down to defective SR Ca\(^{2+}\) release.

Elite Endurance Athletes Develop a Prolonged HIIT-Induced Force Depression, but No RyR1 Fragmentation. In the next set of experiments, we tested whether the HIIT exercise-induced RyR1 fragmentation also occurs in individuals with a high aerobic capacity. Fourteen elite endurance runners or road cyclists (*SI Appendix*, Table S1) performed the six bouts of 30-s all-out cycling. The mean power decreased as the series of cycling bouts progressed also in these athletes (*SI Appendix*, Fig. S10A), but the average decrease in the sixth bout was slightly smaller (~15%) than in the recreationally active subjects (~25%). Moreover, there was a marked decrease in electrically stimulated force production after exercise, especially at the low (10 Hz) stimulation frequency (*SI Appendix*, Fig. S10B). Intriguingly, Western blots showed no signs of increased RyR1 fragmentation after the HIIT exercise in the elite athletes (Fig. 2 A and B), which is in sharp contrast to the marked fragmentation observed in the recreationally active subjects.

Increased ROS production during exercise is classically linked to enhanced mitochondrial respiration, resulting in increased superoxide (O\(_2^-\)) production in complexes I and III of the electron transport chain (32). Superoxide dismutase 2 (SOD2) and catalase have key roles in cellular ROS metabolism by converting superoxide into hydrogen peroxide (H\(_2\)O\(_2\)) and H\(_2\)O, into water, respectively. We measured the protein expression of SOD2 and catalase in *vastus lateralis* muscle before the HIIT exercise and observed at least twice as high expression in the elite athletes as in the recreationally active subjects (Fig. 2C).

Changes in cellular Ca\(^{2+}\) handling can affect gene transcription and hence the adaptive response to physical exercise (33, 34). The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) transcriptional coactivators have key roles for muscle adaptations, with PGC-1α being critically important for adaptations to endurance-type exercise and PGC-1α more important for resistance-type exercise (4, 35). The transcript levels for both these PGC-1α isoforms were significantly increased directly after the HIIT exercise in muscle biopsies from both recreationally active subjects and elite endurance athletes (Fig. 2D). Intriguingly, 24 h after the HIIT exercise, these transcripts were decreased by ~80% in recreationally active subjects, whereas they were back at the pre-exercise level in the elite athletes. Moreover, transcripts of PGC-1α-targeted genes encoding for mitochondrial proteins and several transcription factors that change in response to exercise also showed markedly decreased transcript levels 24 h after exercise only in recreationally active subjects (*SI Appendix*, Fig. S11). Thus, the HIIT exercise triggered prolonged changes in gene transcription in the recreationally active subjects, but not in the elite endurance athletes.

HIIT-Induced Fragmentation of RyR1 Is ROS-Dependent. The absence of RyR1 changes combined with higher SOD2 and catalase protein expressions in the elite athletes suggests an involvement of ROS in the triggering of RyR1 fragmentation. Experiments on isolated mouse flexor digitorum brevis (FDB) muscle, which is a fast-twitch toe muscle containing mainly type IIa/IIx fibers (15), were performed to specifically study tentative ROS-induced modifications of RyR1. The mitochondrial ROS production was measured with the fluorescent indicator MitoSOX Red in single FDB fibers from sedentary control mice and mice that had free access to a running wheel in the cage. The latter mice performed voluntary endurance training by running ~20 km each night for 40 d (*SI Appendix*, Fig. S12A). The isolated fibers were activated with electrical current pulses and a stimulation scheme mimicking the activation pattern during the all-out cycling bouts (six 30-s periods of 250 ms tetanic 100-Hz stimulation given every 500 ms with 4 min of rest between the stimulation periods). At 5 and 10 min after the simulated HIIT exercise, the MitoSOX Red fluorescence was increased by ~200% in the sedentary control mice, whereas the increase was significantly smaller (by ~80%) in the endurance-trained mice (*P* < 0.01; *SI Appendix*, Fig. S12B). The ROS-induced increase in MitoSOX Red fluorescence is not reversible. The stable fluorescence between 5 and 10 min after exercise therefore indicated that ROS production returned to a low baseline level once the HIIT-mimicking stimulation was stopped. Thus, there was a marked increase in mitochondrial ROS production during the simulated HIIT exercises, and this increase was attenuated with endurance training.

Next, intact, single-digit FDB muscles were activated with the HIIT-mimicking stimulation scheme, and Western blots were performed on muscles frozen 5 min after the last contraction displayed no signs of RyR1 degradation, and DHPR expression was similar to the control level. However, there was a doubling of

Fig. 2. HIIT exercise does not induce RyR1 fragmentation in elite endurance athletes. (A) Representative Western blots show no signs of RyR1 fragmentation after the cycling bouts in the elite athletes. Arrows indicate full-sized RyR1 (red arrow) and the location of ~375-, 80-, and 60-kDa fragments (black arrows) observed 24 h after exercise in recreationally active subjects (Fig. 1A). (B) Mean data (± SEM) obtained from 14 elite athletes before (Pre) and ~10 min (Post) and 24 h after exercise; total RyR1 expression was set to 100% at each time point in each subject. (C, Upper) Representative Western blots of SOD2, catalase, and DHPR from biopsies taken before the HIIT exercise in recreationally active subjects (Rec) and elite athletes (EA). DHPR did not differ between the two groups and was used as loading control. (C, Lower) Bar graphs show mean SOD2 and catalase expressions (± SEM; *n = 7*) relative to the mean in the Rec group, which was set to 100%. **P < 0.01** in unpaired t test. (D) Mean data (± SEM; *n = 6–8*) of the transcript levels of PGC-1α and -1α4 expressed relative to hypoxanthine guanine phosphoribosyl transferase (HPRT), which did not differ between the groups and was used as a housekeeping gene. *P* < 0.05; **P < 0.01; ***P < 0.001 vs. before exercise (one-way repeated measures ANOVA/Holm–Sidak post hoc test). PGC-1α4 was significantly higher before exercise in Rec than in EA (*P < 0.05; unpaired t test).
B one-way ANOVA (and during the series of contractions (Fig. 3B)). Thus, our results support a model where ROS induce modifications of RyR1 during the HIIT exercise, and these then trigger RyR1 fragmentation. The distinct pattern of HIIT exercise-induced RyR1 fragmentation suggests that it involves an enzymatic cleavage process. Calpains are the likely candidates, and we measured the fragmentation of RyR1 after the simulated HIIT exercise; data are expressed relative to the force (15, 38). [Ca^{2+}]_i before (white circle; obtained by adding fully active calpain and calpain inhibitor, respectively. All data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001 with unpaired t test (A) or one-way ANOVA (B and C).

HIIT Induces a Prolonged Force Depression and an Increase in Resting [Ca^{2+}]_i To assess the effect of RyR1 fragmentation on SR Ca^{2+} handling, we used mechanically dissected single mouse FDB fibers with intact tendons—i.e., a preparation that allows detailed measurements of [Ca^{2+}]; as well as the resulting force (15, 38). [Ca^{2+}]_i during the initial 250 ms tetanic contraction of the simulated cycling bouts decreased with increasing number of bouts, being decreased by ~35% at the start of the sixth bout (Fig. 4A); i.e., defects in SR Ca^{2+} release induced by the previous 30-s bouts of intense activation were not reversed during the 4-min rest periods between bouts.

In agreement with the results of the above human experiments, isolated mouse FDB fibers entered a prolonged state of severely depressed force after the simulated HIIT exercise, especially at the lower (40 Hz) stimulation frequency (Fig. 4B); it should be noted that fusion occurs at higher frequencies in the mouse than in the human muscles, and 40 Hz stimulation of the mouse FDB fibers gave about the same proportion of the maximum force as 10 Hz for the human quadriceps muscle. Tetanic [Ca^{2+}]_i also displayed a prolonged decrease after the contraction bouts, but in this case the decrease was larger at 120-Hz than at...
40-Hz stimulation (Fig. 4C). These seemingly conflicting results are explained by the change in the force–[Ca$^{2+}$]$_i$ relationship (5), and Fig. 4D shows that the force–[Ca$^{2+}$]$_i$ relations in 40- and 120-Hz contractions produced 120 min after the simulated HIIT exercise overlap with the force–[Ca$^{2+}$]$_i$ relationship under control conditions (obtained by producing 350-ms contractions at 15–150 Hz at 1-min interval in the same fibers before exercise).

Modified RyR1 can become leaky (6), which may result in an increase in resting [Ca$^{2+}$]$_i$. Accordingly, the simulated HIIT exercise induced a prolonged ~40% increase in resting [Ca$^{2+}$]$_i$ (Fig. 4E). Caffeine interacts with RyR1 to potentiate SR Ca$^{2+}$ release (39). Fig. 4F shows [Ca$^{2+}$]$_i$, records from 100 Hz tetani produced in an FDB fiber exposed to caffeine (5 mM) before and after the simulated HIIT exercise; mean data show ~30% lower [Ca$^{2+}$]$_i$ during caffeine tetani produced after the exercise (P < 0.05; Fig. 4F). These findings indicate that the simulated HIIT exercise induces RyR1 leakage, promoting Ca$^{2+}$ fluxes from the SR toward the cytosol, which then results in increased resting [Ca$^{2+}$]$_i$, while tetanic [Ca$^{2+}$]$_i$ is reduced due to a decline in the releasable SR Ca$^{2+}$ pool. It might also be noted that a prolonged increase in resting [Ca$^{2+}$]$_i$ stimulates mitochondrial biogenesis and can thereby improve muscle endurance (14–16). Thus, the observed exercise-induced increase in resting [Ca$^{2+}$]$_i$ provides a tentative trigger for HIIT-induced mitochondrial biogenesis (21).

Discussion

We show here that one short session of HIIT exercise (total exercise time ≤3 min) can induce an extensive fragmentation of the skeletal muscle SR Ca$^{2+}$ release channel RyR1. Mechanistic experiments performed on isolated mouse muscle indicate that this fragmentation was triggered by ROS-dependent modifications of RyR1 as follows. (i) Mitochondrial ROS production increased substantially during the simulated HIIT exercise; in fact, the present increase in MitoSOX fluorescence in muscle fibers of control mice was ~10 times larger than previously observed with a less demanding fatiguing stimulation protocol (20). (ii) There was a doubling of RyR1 MDA adducts, which reflect increased lipid peroxidation, 5 min after HIIT-mimicking exercise. (iii) A marked RyR1 fragmentation was present 3 h after exercise, and this fragmentation was prevented by the general antioxidant NAC. Furthermore, endurance training is known to improve muscle antioxidant capacity (32, 40). Accordingly, muscles of elite endurance athletes showed improved ROS defense by increased protein expression of SOD2 and catalase and no HIIT exercise-induced RyR1 fragmentation, and the exercise-induced increase in mitochondrial ROS production was significantly smaller in endurance-trained than in sedentary mice.

The HIIT exercise-induced RyR1 fragmentation showed a characteristic pattern with distinct bands on Western blots at ~375, 80, and 60 kDa, which indicates a tightly controlled enzymatic cleavage process. Enzymes that might cause the RyR1 fragmentation include calpains and we observed a marked increase in total calpain activity in mouse FDB muscle after simulated HIIT exercise. Calpain-3, a muscle-specific member of the calpain family of nonlysosomal Ca$^{2+}$-dependent proteases (41, 42), is particularly interesting in this respect because it has been shown to cleave the RyR1 monomer (565 kDa) into two fragments with molecular masses of ~375 and 150 kDa without affecting other SR proteins (41, 43).

Interestingly, the HIIT exercise resulted in prolonged low-frequency force depression (PLFFD) of similar magnitude in recreationally active subjects and elite endurance athletes, but only the former showed RyR1 fragmentation. We have previously shown that the mechanism behind PLFFD is shifted from decreased SR Ca$^{2+}$ release to reduced myofibrillar Ca$^{2+}$ sensitivity with either increased endogenous oxidant defense or exogenous application of antioxidants (20, 44, 45). For instance, PLFFD is caused by reduced myofibrillar Ca$^{2+}$ sensitivity in mouse FDB fibers overexpressing SOD2, whereas it is due to decreased SR Ca$^{2+}$ release in their wild-type counterparts (44). Accordingly, the expressions of SOD2 and catalase were at least twice as high in endurance athletes as in recreationally active subjects. Thus, our data fit with a model in which HIIT exercise-induced PLFFD in the recreationally active subjects relates to ROS-dependent RyR1 modifications, resulting in increased SR Ca$^{2+}$ leak at rest and decreased SR Ca$^{2+}$ release during contractions. Conversely, more effective oxidant defense in the elite athletes would shift the cause of PLFFD to decreased myofibrillar Ca$^{2+}$ sensitivity (45).

A prolonged alteration in muscle fiber [Ca$^{2+}$]$_i$, homeostasis will affect cellular signaling and gene expression—e.g., induction of mitochondrial biogenesis via Ca$^{2+}$–calmodulin protein kinase and calcineurin signaling (14–16, 33, 34)—whereas a change in myofibrillar Ca$^{2+}$ sensitivity is less likely to have such effects. Major changes in RyR1 structure and in mRNA levels of proteins known to change with endurance training were observed 24 h after the HIIT exercise in the recreationally active subjects, but not in the elite athletes. This finding implies that prolonged Ca$^{2+}$-dependent adaptations were triggered only in the recreationally active subjects, which fits with the general picture that HIIT exercise is less effective in well-trained subjects (21). However, the measured transcript levels related to mitochondrial biogenesis and endurance showed a general decrease—rather than the expected increase—24 h after the HIIT exercise. The training-induced increase in mitochondrial proteins appears to result from the cumulative effect of transient bursts of their mRNAs (46). Therefore, it might be that the decreased transcript levels 24 h after the HIIT exercise are the result of feedback from increases at earlier times; additional experiments are required to resolve this issue.

One conspicuous result of the present study is that the force produced in response to electrical nerve stimulation was close to normal 24 h after the HIIT exercise in recreationally active subjects, despite RyR1 showing major fragmentation at this time. Similarly, FDB fibers displayed decreased, but not absent, SR Ca$^{2+}$ release in response to tetanic stimulation at the time when RyR1 was severely fragmented. The channel pore region of RyR1 is located close to the C-terminal of the protein, and even the smallest major fragments (60 kDa) observed 24 h after the HIIT exercise would include the pore (47, 48). Our immunostaining experiments on dissociated mouse FDB fibers showed a striated pattern of RyR1 staining at the time of fragmentation, hence indicating the continued presence of functional RyR1 Ca$^{2+}$ pores in the SR membrane. The results of our measurements of [Ca$^{2+}$]$_i$ in dissected mouse FDB fibers exposed to the simulated HIIT exercise imply that the fragmented RyR1s are leaky, resulting in the increased resting [Ca$^{2+}$]$_i$. Interestingly, these results fit with the finding that calpain-3–cleaved RyR1 became stabilized in an open subconducting state (41), which in the intact muscle fiber would lead to an increase in resting [Ca$^{2+}$]$_i$. Together, our results indicate that the fragmented RyR1s are leaky at rest, but they still provide a prompt SR Ca$^{2+}$ release in response to action-potential-induced activation of the t-tubular voltage sensors.

In the present study, we demonstrate a fragmentation of RyR1 linking high-intensity exercise and increased ROS levels, via a prolonged increase in resting [Ca$^{2+}$]$_i$, to altered gene transcription and muscle adaptations. The induction of RyR1 fragmentation resulting in a long-lasting increase in resting [Ca$^{2+}$]$_i$ provides a mechanism for how a short session of HIIT exercise (≤3 min) can be highly effective in triggering muscle adaptations. Moreover, the ROS dependency of RyR1 modifications offers a tentative explanation as to why an effective antioxidant treatment hampers beneficial adaptations induced by endurance training (17–19). Finally, destabilized RyR1 has predominantly been linked to muscle weakness in several pathological conditions as well as in normal aging (8–13), but here we show that RyR1 modifications can also have an integral role in physiological muscle adaptations.
Materials and Methods

Detailed materials and methods are described in SI Appendix, SI Materials and Methods.

Human Experiments. Data were obtained from young (mean age 26 y) male subjects, who were either recreationally active or elite endurance athletes (SI Appendix, Table S1). The studies were approved by the local Ethics Com- mittees and performed in accordance with the Helsinki Declaration. Each subject gave written informed consent before participation. Subjects per- formed one session of HIIT consisting of three to six 30-s all-out cycling bouts at 0.7 Nm per kg of body weight on a cycle ergometer, with a 4-min rest between tests (26). Force production and electromyography signals were measured before and up to 24 h after exercise. Muscle biopsies taken from the vastus lateralis muscle before and ~10 min and 24 h after exercise were used for protein and mRNA analyses and measurements of myofibrillar function using skinned fibers.

Isolated Mouse Muscles. All animal experiments complied with the Swedish Animal Welfare Act and the Swedish Welfare Order. The study was approved by the Stockholm North Ethical Committee on Animal Experiments. Adult C57BL/6 mice were killed by cervical dislocation, and fast-twitch FDB muscles were removed. Force and [Ca2+]-were measured in mechanically dissected, intact single FDB fibers (38).

Statistical Analyses. Statistically significant changes induced by the different types of exercise were assessed with unpaired t test, paired t test, one-way ANOVA, or one-way repeated-measure ANOVA as appropriate. The Holm– Sidak post hoc test was used to evaluate differences after vs. before exercise. The significance level was set to P < 0.05. All statistical analyses were conducted with SigmaPlot software for Windows (Systat).

ACKNOWLEDGMENTS. We thank Sylvain Rayroud for technical assistance during cycling exercise sessions and Jui-Lin Fan for technical assistance with the VO2max data collection. This study was supported by grants from the Swedish Research Council (to H.W., J.L.R., and J.T.L.); the Swedish Na- tional Center for Sports Research (A.J.C. and H.W.); the Research Council of Lithuania (S.K., A.S., H.W., and M.B.); Novo Nordisk Fonden and Wenner- Gren Foundations (J.L.R.); and the Sir Jules Thorn Charitable Trust and the Chaud Firm Schmid Foundation (N.P.).