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Hybrid breeding promises to boost yield and stability. The single
most important element in implementing hybrid breeding is the
recognition of a high-yielding heterotic pattern. We have developed
a three-step strategy for identifying heterotic patterns for hybrid
breeding comprising the following elements. First, the full hybrid
performance matrix is compiled using genomic prediction. Second,
a high-yielding heterotic pattern is searched based on a developed
simulated annealing algorithm. Third, the long-term success of the
identified heterotic pattern is assessed by estimating the useful-
ness, selection limit, and representativeness of the heterotic pattern
with respect to a defined base population. This three-step approach
was successfully implemented and evaluated using a phenotypic
and genomic wheat dataset comprising 1,604 hybrids and their 135
parents. Integration of metabolomic-based prediction was not as
powerful as genomic prediction. We show that hybrid wheat
breeding based on the identified heterotic pattern can boost grain
yield through the exploitation of heterosis and enhance recurrent
selection gain. Our strategy represents a key step forward in
hybrid breeding and is relevant for self-pollinating crops, which
are currently shifting from pure-line to high-yielding and resilient
hybrid varieties.
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Wheat production must be doubled by 2050 to cope with
increased demand arising from continuing population growth,

increasing meat and dairy consumption, and expanding biofuel use
(1). An environmentally sound approach to meeting this goal in-
volves enhancing crop yields per area rather than clearing more land
for agriculture (1); however, yield growths in wheat are stagnating in
several parts of the world, affecting 37% of the global acreage (2).
Hybrid breeding is a potential disruptive technology in selfing

species that could boost yield per area (3) and enhance yield
stability. The latter is of particular relevance for climate-smart
agriculture and low-yielding environments, where wheat is widely
grown (4). Wheat hybrids are currently cultivated on only <1%
of the global acreage, mainly because of the failure to implement
a cost-efficient hybrid seed production system, which is required
for establishment of a competitive hybrid breeding program (5).
Recently, considerable progress has been achieved in developing
alternative, more economically feasible hybridization systems,
such as the functional characterization of potential cytoplasmic
male sterility systems (6). Moreover, a proof-of-concept study
has demonstrated the use of a split-gene system for hybrid wheat
production (5), and a transgenic construct-driven system for
production of non-genetically modified hybrid maize has been
deregulated (7), which is also of interest for wheat. Consequently,
it is projected that the barriers to economically feasible hybrid
wheat production can be overcome in the next 10–15 years (8).
The success of hybrid wheat breeding depends crucially on the

clustering of suitable germplasm into heterotic groups and on the

identification of a high-yielding heterotic pattern (5). A heterotic
group is a set of genotypes displaying similar hybrid performance
when crossed with individuals from another, genetically distinct
germplasm group (9). A specific pair of two heterotic groups
expressing pronounced hybrid performance in their cross is termed
a heterotic pattern. A heterotic pattern is improved by exploiting
genetic variation generated within heterotic groups (10). Breeding
hybrids in such a manner promotes genetic divergence among
parents (11), optimizes the exploitation of heterosis and hybrid
performance, and simplifies the identification of superior single
crosses (12).
The heterotic pattern used for maize breeding in the US corn

belt, the cradle of hybrid breeding, did not exist initially (11).
The germplasm was not structured into heterotic groups, but
with the introduction of single-cross hybrids, available inbred
lines were clustered into a female pool and a male pool according
to production traits, such as seed yield. With ongoing hybrid
breeding, the male and female groups coevolved and diverged
(13), most likely owing to differential fixation of quantitative trait
locus (QTL) alleles caused by dominance or overdominance (14).
The great success of maize hybrids in the US corn belt stim-

ulated the initiation of hybrid breeding programs for several
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other outcrossing crops, including sunflower, sugar beet, and rye.
Heterotic patterns for these second-generation hybrid crops were
established empirically by testing hybrid combinations among
potential parental lines in field trials. Importantly, however, be-
cause the number of all pairwise single crosses is a quadratic
function of the number of parents, evaluating all hybrid combi-
nations in field trials is not manageable for most crops. Thus, the
picture of the combining ability of potential parents in a hybrid
breeding program has always been incomplete.
Various approaches to improving the overall view of com-

bining ability in the absence of exhaustive crossing schemes have
been proposed. Molecular marker-based genetic distance has
been promoted as a proxy for heterosis and ultimately hybrid
performance, although this is not the case for unrelated parental
lines (12). Alternatively, genome-wide approaches can be used to
predict hybrid performance (3, 10, 14). Genomic prediction is
particularly promising for the complex trait of grain yield, be-
cause pedigree information, cosegregation, and linkage disequi-
librium between markers and QTLs are jointly exploited. To
date, genomic prediction has not been used to identify heterotic
groups for hybrid breeding, however.
When data on hybrid performance of all pairwise single crosses

are available, efficient algorithms are needed to sift through the
plethora of potential groupings to identify the most promising
heterotic pattern. An extended enumeration algorithm has been
suggested for this search (15), but this class of algorithms is too
computationally intensive for large populations. Moreover, op-
timizing hybrid performance focuses on the short-term success of
a heterotic pattern. This short-term success arises mainly through
high selection intensities (16) and a low number of elite founder
individuals in the heterotic groups. In contrast, long-term selection
gain benefits from genetic variance, which is associated with a
large effective population size of the heterotic pattern. Conse-
quently, criteria for maximizing high short-term selection gains
without promptly diminishing genetic variance are required in
the search for heterotic patterns, but such approaches are not yet
in place.
Here we report a unified quantitative genetic framework for

identifying a promising heterotic pattern considering short- and
long-term selection gains. To demonstrate the scope of this
framework, we assembled the largest phenotypic, metabolomic,
and genomic hybrid wheat dataset documented to date, com-
prising 1,604 single crosses established from a diverse set of 135
Central European elite lines. We first evaluated the potential of
genomic- and metabolomic-based hybrid prediction to derive the
data required to identify heterotic groups. We then applied our
genomic prediction models to predict the performance of all
9,045 possible unique single-cross hybrids. These data served to
identify heterotic patterns with variable population sizes, maxi-
mizing hybrid performance as determined based on a developed
simulated annealing algorithm. We then studied the suitability of
several parameters for judging the long-term potential of the
selected heterotic pattern. Wheat has been successfully used for
the proof of principle presented here, but the developed quan-
titative genetic framework is generically applicable to other self-
fertilizing crops as well.

Results
Hybrid Superiority Demonstrated Through Large-Scale Phenotyping.
We sampled 120 diverse female and 15 male wheat lines adapted
to Central Europe (SI Appendix, Table S1), and produced 1,604
single-cross hybrids. We evaluated the genotypes for grain yield
in field trials across 11 environments to produce high-quality
phenotypic data (Dataset S1). This is reflected by a broad-sense
heritability of 73% (SI Appendix, Table S2 and Fig. S1A), which
closely corresponds to expectations resulting from other phe-
notypic variance components reported for Central European
wheat populations (17). In total, 97 hybrids significantly (P < 0.05)

outperformed the highest-yielding released line variety Tobak, with
a maximum surplus of 1 Mg ha−1 (SI Appendix, Fig. S1C). This
improvement reflects roughly 15 y of breeding progress (18) in
a single year, clearly exemplifying the potential boost to wheat
grain yield through hybrid breeding.
Wheat breeders do not emphasize grain yield exclusively, but

also consider abiotic and biotic stress resistance, as well as food
or feed quality. Thus, we created an index comprising grain yield,
six abiotic and biotic stress traits (frost tolerance, resistance to
brown and yellow rust, Fusarium head blight, powdery mildew,
and Septoria tritici blotch), and seven quality characteristics
(1,000-kernel weight, gluten content, kernel hardness, protein
content, sedimentation volume, starch content, and test weight)
(SI Appendix, Fig. S1B). Importantly, the superiority of particular
hybrids over the best released line variety is not restricted to
grain yield (9%), but is also present, albeit slightly less pro-
nounced (6%), for an index combining the above-listed agro-
nomic and quality traits.

Genomic Prediction Allowed Compilation of the Required High-
Quality Hybrid Performance Data to Identify Heterotic Groups. Esti-
mates of the hybrid performance of all 9,045 pairwise single
crosses are required to search for heterotic patterns among the
135 parental wheat lines. Because each of the 135 parents was
tested in several of the 1,604 hybrids, and male and female lines
do not reflect different germplasm pools (SI Appendix, Note a),
the prediction accuracy of the remaining 7,441 nonphenotyped
hybrids corresponds approximately to that of the T2 scenario
obtained in the chessboard-like cross-validation study (SI Ap-
pendix, Note b). This is further substantiated by the high re-
liability values of the hybrid performance estimated for the 7,441
single crosses, comparable to those of the phenotyped hybrids
(SI Appendix, Note b). The reliability criterion, which has been
proposed in the context of animal breeding (19), is a measure of
the prediction accuracy of a particular hybrid determined based
solely on its genotypic data (SI Appendix, Note b). The prediction
accuracy of the T2 scenario based on additive and dominance
effects was high at 0.89 (Fig. 1 and SI Appendix, Note b). This
value is higher than previously observed for a population com-
prising 90 wheat hybrids (20), but corresponds to findings reported
for 1,254 factorial crosses in a public maize breeding program
(14). Thus, the high prediction accuracy observed in our study can
be explained by a large population size of 1,604 single crosses, the
phenotyping in 11 environments, as well as efficient exploitation of
genetic relatedness for hybrid prediction. The quality of the
resulting predicted hybrid performances corresponds to a broad-
sense heritability of field trials conducted in seven environments (SI
Appendix, Fig. S2); consequently, the hybrid data provide a solid
database for identifying heterotic patterns among the 135 lines.
If further lines outside the sample space of 135 parents were

considered for identifying heterotic groups, then prediction ac-
curacies obtained in the less-related T1 and T0 scenarios were
relevant. Prediction accuracies declined with reducing relatedness
between the training and test populations, from 0.89 for T2 to 0.65
for T1 and to 0.32 for T0 (Fig. 1). This decreasing trend can be
explained by an increasing relevance of exploiting information on
linkage disequilibrium between the QTLs and single-nucleotide
polymorphisms (SNPs) for genomic prediction for the T0 scenario
vs. the T2 scenario. The genetic architecture of grain yield is com-
plex with the absence of a large-effect QTL, as revealed by an
association mapping study combined with fivefold cross-validation
(SI Appendix, Note c). Thus, exploiting information on linkage
disequilibrium between the QTLs and SNPs for hybrid prediction
is challenging.

Efficient Designs of Training Populations Increased the Prediction
Accuracy Using Significantly Less Resources. We examined the
prediction accuracy after reducing the number of hybrids but
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keeping the number of parents constant (SI Appendix, Note d).
Our findings clearly show that a drastic reduction in the number
of hybrids from 1,604 to 360 caused only a marginal 3% loss in
prediction accuracy for the T2 scenario. Interestingly, randomly
sampling subsets of hybrids yielded higher prediction accuracies
compared with targeted designs, such as the nested factorial
(1%), balanced incomplete factorial (1%), and top-cross (9%)
designs (SI Appendix, Note d). Consequently, in cases of limited
resources, random missing designs can facilitate a shift from the
T0 scenario to the T2 scenario, thereby tripling the prediction
accuracy of the nonphenotyped hybrids from ∼0.3 to ∼0.9 (Fig. 1).

Neither Modeling Epistasis nor Metabolite Profiling Increased Prediction
Accuracy. We examined the prediction accuracy of genomic
prediction models, considering both main (i.e., additive and
dominance) and epistatic effects. Splitting the total genetic
variance into its different components demonstrated the im-
portant contribution of additive effects (71%), but also high-
lighted the relevance of epistatic effects (20% of the genetic
variance) (SI Appendix, Fig. S3). Nevertheless, the prediction
accuracies for the T0, T1, and T2 scenarios profited only mar-
ginally, with a maximum 3% increase through modeling of main
and epistatic effects (SI Appendix, Table S3). This can be explained
by the fact that the additive and dominance kinship matrices
are correlated with the kinship matrices of the epistatic effects
(SI Appendix, Table S4), and thus capture much information for
hybrid prediction.
Metabolite profiling provides complementary data to genome-

based hybrid prediction because of the high level of condensed
information that can be collected with large-scale automated
analytical platforms (21). Thus, we generated metabolite profiles
from flag leaf samples of the parental lines collected in multi-
environmental trials at three locations, to show significant (P <
0.05) genetic variances with average heritability estimates of
46% (SI Appendix, Table S5). Despite the high quality of the

metabolite profiles and the low correlation between the genetic
and metabolic distances (r = 0.02; P < 0.34), the genome-based
prediction accuracies could not be improved any further.

Our Simulated Annealing Algorithm Enabled Prediction of a High-
Yielding Heterotic Pattern. We used the genomic prediction
model calibrated based on the grain yield data of the phenotyped
individuals and predicted the performance of all 9,045 unique
single-cross hybrids among the 135 parental lines (Fig. 2). No
obvious groups of lines displaying high hybrid performance could
be identified using the complete linkage clustering method.
Consequently, we developed a simulated annealing algorithm (SI
Appendix, Note e), which enabled the identification of a high-
yielding heterotic pattern (Fig. 2).
Interestingly, we found that once lines had been clustered into

a heterotic group, they mostly remained within that group even
when the population size was expanded (Fig. 3). We did note
some exceptions, however; for example, line F115 clustered into
heterotic group I only for population sizes 6, 8, and 36, but was
assigned into heterotic group II for the remaining population
sizes. Nonetheless, it is important to note that the groupings
were identified based solely on predicted hybrid performance.
Therefore, we devised a cross-validation scenario exclusively for
the phenotyped hybrids, and confirmed the stability of the groups
identified with the simulated annealing algorithm. Approximately
80% of the individuals overlapped between the group identified
based on predicted hybrid performance and that identified based
on observed hybrid performance (SI Appendix, Note e). The
identified heterotic groups outperformed the average perfor-
mance of all possible 9,045 hybrids with a maximum difference of
0.91 Mg ha−1, greater than that reported for groups identified
with alternative clustering approaches (SI Appendix, Note e).
The lines clustered into heterotic group I (Fig. 3 and SI Ap-
pendix, Note e) often consisted of top performers with respect to
general combining ability effects (SI Appendix, Table S1); nev-
ertheless, the population of intragroup hybrids did not out-
perform the intergroup single crosses for all examined sizes of the
heterotic groups (SI Appendix, Note e). Decreasing the number of
individuals per heterotic group resulted in enhanced performance
of the hybrid populations, owing to higher selection intensities

Fig. 1. Accuracy of genomic (G-Predict), metabolomic (M-Predict), and joint
genomic and metabolomics-based (G+M-Predict) prediction of hybrid per-
formance. The results are based on G-BLUP models exploiting additive and
dominance effects. T2 test sets included hybrids sharing both parental lines,
T1 test sets included hybrids sharing one parental line, and T0 test sets in-
cluded hybrids with no parental line in common with the hybrids in the
related training sets.

Fig. 2. Heat plot of predicted hybrid performance ordered using complete
linkage clustering (above the diagonal) and ordered based on the developed
simulated annealing algorithm (below the diagonal).

Zhao et al. PNAS Early Edition | 3 of 6

A
G
RI
CU

LT
U
RA

L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

28
, 2

02
1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1514547112/-/DCSupplemental/pnas.1514547112.sapp.pdf


among parental lines. This improved hybrid performance went
hand in hand with an increased midparent heterosis (Fig. 3),
which was expected because of the highly significant correlation
(r = 0.41; P < 0.001) observed between midparent heterosis and
hybrid performance for the 9,045 single crosses.

Long-Term Success for Grain Yield Can Be Attained with Heterotic
Group Sizes of Only 16 Individuals. The long-term success of het-
erotic groups depends not only on the initial mean value of the
hybrid population, but also on the realized future selection gain.
The latter parameter is driven by the design and allocation of
resources to the respective hybrid wheat breeding program, in
addition to the diversity of the selected lines determining the
increase in grain yield in the hybrid population. As a first crite-
rion for judging the long-term success of the selected heterotic
pattern, we used the usefulness criterion, which takes both the
mean performance of the population and the expected gain of
one cycle of selection into consideration (22). We expanded the
usefulness by assuming additional 5 and 10 cycles of selection
and a constant genetic variance. Previous simulation studies have
shown that the assumption of a constant genetic variance is valid
within 10 cycles of selection (23). Maximizing the usefulness for
one cycle of selection favors small heterotic group sizes, whereas
selection favors large heterotic group sizes as the tenth cycle is
approached (Fig. 3). Nevertheless, the usefulness criterion showed
no linear increase with increasing size of the heterotic groups; for
instance, the slope of the usefulness criteria decreased more than
twofold in the interval from two to eight parental lines compared
with in the interval from 8 to 36 individuals per heterotic group.
As a second criterion, we used the estimated additive and

dominance effects of the SNPs and examined the selection limits
reached after an infinite number of selection cycles. The selec-
tion limit increased with growing size of the heterotic groups, but

plateaued at approximately 16 individuals per pool (Fig. 3).
Interestingly, this plateau was also observed for the genetic rep-
resentativeness of the heterotic groups with respect to the total
population of 135 lines, which was estimated based solely on the
genomic data (Fig. 3). Consequently, these results indicate that
starting in Central Europe, a hybrid wheat breeding program with
heterotic groups comprising the identified 16 individuals may
guarantee long-term success in improving grain yield performance.

Discussion
Breeding Based on the Identified Heterotic Pattern Boosts Midparent
Heterosis and Enhances Recurrent Selection Gain. To highlight the
advantages of our approach to the search for an optimal heter-
otic pattern, we contrasted it with several alternative approaches,
including the use of midparent or better-parent heterosis and
general combining ability effects or per se performance of parents
(SI Appendix, Note e). The trends across alternatives and the
resulting conclusions were comparable, and thus we discussed
them only for a strategy in which parents were selected based on
their per se performance, followed by a random clustering of
superior lines into heterotic groups. Interestingly, the selection of
parents was similar, with an average of 71% overlap of selected lines
in both approaches (Table 1). This similarity can be explained by the
moderate to high correlation observed between midparent perfor-
mance and hybrid performance (r = 0.62; P < 0.001). Despite the
overlap of selected lines, the heterotic pattern defined according to
the targeted grouping of parents based on the simulated annealing
algorithm yielded midparent heterosis values up to 21% higher than
values yielded by the scenario of random grouping of lines (Table 1).
Surprisingly, the increase in midparent heterosis was due only in part
to enhanced genetic diversity between the heterotic groups identi-
fied based on the simulated annealing algorithm compared with the
per se scenario (Table 1 and SI Appendix, Fig. S4). This can be
explained by the use of neutral SNP markers for estimating ge-
netic diversity, which is not significantly correlated with heterosis
(r = 0.09; P = 0.18) (SI Appendix, Fig. S5).
Another potential benefit of our targeted strategy for searching

for a heterotic pattern relates to the ratio of genetic variance
components in the hybrid population, which depends on allele
frequencies. Based on quantitative genetic theory, hybrid breeding
using divergent heterotic groups would be expected to promote
the additive over the dominance genetic variance (12). Accord-
ingly, we observed a higher ratio of the additive versus the dom-
inance genetic variance for the heterotic groups identified based
on the simulated annealing algorithm compared with the scenario
of random grouping of lines (Table 1). The enhanced relevance of
additive genetic variance contributes to an increase in recurrent
selection gain (16). Moreover, predictions based on additive ef-
fects are more accurate than those based on dominance effects
(14). Thus, breeding based on the identified heterotic pattern also
increases the prediction accuracies in genomic prediction.

Focusing on Hybrid Performance and Ignoring Hybrid Seed Production
Traits Appears Justified. We focused our approach on maximizing
grain yield of the hybrid population while ignoring traits relevant
for hybrid seed production. In wheat, the most important limit-
ing factor in a cost-efficient hybrid seed production system is low
pollen shedding in the cleistogamic wheat flower (5). Redesigning
the wheat flower (7) seems feasible, given the large genetic vari-
ation present in genetic resources and even in elite breeding pools
(24). This, in combination with advances in molecular breeding
tools that enable the efficient modulation of major genes (25),
facilitates the exclusive focus on grain yield as the most important
trait in the search for promising heterotic patterns.

Large Population Sizes of Heterotic Groups Enable Coevolution Owing
to Differential Fixation of QTL Alleles. Intense selection increases
short-term selection gain, but a reduction in the effective population

Fig. 3. Heterotic groups of varying sizes identified maximizing the hybrid
performance between them. Shown are hybrid performance (Mg ha−1);
standardized midparent heterosis (percentage); representativeness of het-
erotic groups in relation to the full population of 135 lines (percentage);
usefulness (Mg ha−1) after 1, 5, and 10 cycles of selection; and selection limit
(Mg ha−1) in relation to the heterotic group size.
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size carries a cost in terms of long-term response (23). This
could be of particular relevance for hybrid breeding, where
ongoing reciprocal recurrent selection likely leads to divergent
chromosomal regions caused by dominance or overdominance
(14). Consequently, once a heterotic pattern has been identified
and enhanced through interpopulation selection, the introgres-
sion of novel germplasm potentially disrupts coevolved gene
complexes. This clearly suggests that larger heterotic group sizes
are beneficial.
We observed that the selection limit targeting long-term re-

sponse plateaus at approximately 16 individuals per heterotic
group (Fig. 3). At first glance, this population size seems low and
suggests that hybrid breeding schemes should be implemented to
maximize the response for selection with a predefined rate of
inbreeding (26). Interestingly, the effective number of ancestors
for the Iowa Stiff Stalk Synthetic and Iodent heterotic groups
used intensively in North American maize was around 16 as well
(11). Substantial maize yield increases were realized in the
United States, with grain yield doubled in the past eight decades
through hybrid breeding (13). Considering this, along with the
role of mutations generating new variations (27), suggests that a
heterotic group size of around 16 individuals guarantees a sus-
tainable long-term selection gain in hybrid wheat breeding for
Central Europe. Impending genetic vulnerability to evolving
pests and diseases, which cannot be tackled with the latent ge-
netic variation present within heterotic groups, can be counter-
acted with targeted introgressions of relevant major resistance
genes into the heterotic groups.

Expanding the Search for Promising Heterotic Patterns Toward Exotic
Germplasm Is Challenging. For wheat, heterotic groups between
adapted and nonadapted lines, such as winter by spring types,
have been suggested because of their high genetic divergence,
which would be expected to increase heterosis and hybrid per-
formance (28). The proposed random missing mating design for
the T2 scenario (SI Appendix, Note d) facilitates a cost-efficient
expansion of the diversity of parental lines beyond the sample
space of the 135 parents used here. The challenge lies in the pro-
duction and field evaluation of such a broad array of hybrids.
Flowering time is considered a critical adaptive trait for wheat
production (29). Sampling of diverse parents adapted to different
target environments is often associated with large differences in
flowering time; however, hybrid seed production among the pa-
rental lines requires synchronization of flowering time, which is
optimized if the female line flowers 3–4 d earlier than the male line.
Even if hybrids between parents with a large difference in flowering
time are produced, precise field evaluation is impeded because
adaptation problems, such as improper maturity, mask the genetic
potential of hybrids. One approach to expanding the sampling
space of parental lines involves relying on genomic predictions for
the unrelated T0 or T1 scenarios, but this would lead to a drastic

reduction in prediction accuracy (Fig. 1). Consequently, despite its
potential, searching for promising heterotic patterns among adap-
ted and exotic germplasm remains challenging.
As one option for enhancing the T0 prediction accuracy, we

evaluated the potential of complementing genomic data with
metabolite profiles, but found that this failed to increase pre-
diction accuracy (Fig. 1), as was reported previously for maize
(10). One reason for this failure might lie in the sampling of flag
leafs under field conditions. Further research is needed to in-
vestigate the option of improving prediction accuracy through
metabolite profiling under strictly controlled conditions.
Besides metabolite profiling, there are other promising ge-

nomics data sources with the potential to enhance the prediction
accuracy of hybrid performance exploiting, for instance, struc-
tural variation (30) or transcriptome profiling (31). It would be
of interest to integrate these data sources into the existing ge-
nomic selection models to increase the accuracy of prediction of
hybrid performance for unrelated genotypes.

The Proposed Strategy for Searching for Heterotic Patterns Is
Generally Applicable in Autogamous Crops. As suggested based on
quantitative genetic considerations (9) and empirical evidence in
hybrid maize breeding (32), the single most important element of
a hybrid breeding program is the recognition and utilization of a
heterotic pattern. Here we have developed a three-step approach
to identifying a promising heterotic pattern that comprises the
following elements: (i) compilation of a full hybrid performance
matrix using genomic prediction; (ii) a search for a high-yielding
heterotic pattern based on a simulated annealing algorithm; and
(iii) assessment of the long-term success of the identified het-
erotic pattern. We have evaluated this three-step approach using
a comprehensive experimental dataset of wheat adapted to
Central Europe. Using this germplasm to identify heterotic groups
is particularly challenging because of the absence of genetically
distinct subpopulations (SI Appendix, Fig. S4), the result of con-
stant exchanges of lines between wheat breeding programs (17).
Nevertheless, it reflects the typical scenario for many crops that
are in the infancy of hybrid breeding, including rice (33), barley
(34), pearl millet (35), and pigeon pea (36). Thus, the framework
for the recognition of heterotic groups developed in our study
represents a central step forward in the introduction of sustain-
able hybrid varieties to the market for several important crops,
with the final goal of meeting the global challenges of an in-
creasing demand for food, feed, and fuel.

Materials and Methods
Plant Material, Genotyping, Field Data, and Metabolite Profiling. Our study is
based on 135 advanced elite winter wheat lines (SI Appendix, Table S1),
which reflect a broad range of diversity present in Central Europe (37). The
lines were grouped into a female pool and a male pool according to polli-
nation capability, plant height, and flowering time. The 15 male lines were
crossed with the 120 female lines using a factorial mating design. For 1,604

Table 1. Comparison of overlapping genotypes (OG); yield increase, expressed as number of years needed to
realize this selection gain (ΔSG, y) (18); increase in midparent heterosis (ΔMPH); increase in average Rogers’
distance (ΔRD); and decrease in the ratio of dominance vs. additive genetic variance (ΔVC) contrasting the
heterotic pattern identified based on the simulated annealing algorithm vs. random grouping among the best per
se performance parental lines

Variable

Group size

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

OG, % 25 50 50 63 65 67 68 75 78 78 80 77 81 84 83 83 85 83
ΔSG, y 7.5 4.4 4.8 3.8 3.8 3.7 3.6 3.1 3.0 2.9 2.8 2.8 2.7 2.4 2.6 2.7 2.7 2.7
ΔMPH, % 21 9 8 8 7 7 7 6 6 7 6 6 6 6 7 8 8 8
ΔRD, % 17 −2 1 2 1 2 2 3 3 3 2 2 3 3 4 3 3 3
ΔVC, % 95 92 77 74 55 32 45 46 47 42 41 43 39 41 26 25 35 32
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of the potential 1,800 single-cross hybrids, a sufficient amount of seeds was
harvested for intensive field trials. Details of hybrid seed production have
been published elsewhere (37). We added eight commercial lines and two
commercial hybrid varieties (quality class E: Genius; quality class A: As de
Coeur (hybrid variety), JB Asano, Julius, Tuerkis; quality class B: Colonia,
Hystar (hybrid variety), Kredo, Tobak; quality class C: Tabasco) reflecting the
current yield performance in Germany.

We fingerprinted the 120 female and 15 male lines using a 90,000 SNP
array based on an Illumina Infinium assay (38). After quality tests, 17,372
high-quality SNP markers were retained (Dryad Digital Repository: doi:10.5061/
dryad.461nc). The genomic profiles of the hybrids were deduced using the
fingerprints of the parental lines. For a selected set of 20 hybrids, we cross-
checked the deduced fingerprints from their parents and observed a very
low rate of mismatches, with an average of 1.9%.

We evaluated all genotypes (135 parents, 1,604 hybrids, 10 commercial
varieties) for grain yield in 11 environments. Details of the experimental
design and data analyses are provided in SI Appendix, Note f. We combined
the grain yield data with published data on six abiotic and biotic stress traits
(frost tolerance, resistance to brown and yellow rust, Fusarium head blight,
powdery mildew, and Septoria tritici blotch) and seven quality characteristics
(1,000-kernel weight, gluten content, kernel hardness, protein content,
sedimentation volume, starch content, and test weight) and estimated an
index (SI Appendix, Fig. S1B). The index was calculated by standardizing the
values for each trait through division by the SD and subtraction of the mean
value. Grain yield was weighted with 60%, abiotic and biotic stress traits
with 20%, and quality traits with 20%.

For each of the 135 parental lines, we sampled 10 flag leafs per replicate at
three environments at the time when >60% of the genotypes had reached
BBCH-69 (39). The measurement of polar flag leaf extracts followed the

protocol outlined by Lippmann et al. (40). Details of the metabolite profiling
and metabolite data analyses are provided in SI Appendix, Note g.

Predicting Hybrid Performance and Identifying Heterotic Groups. We imple-
mented genomic best linear unbiased prediction (G-BLUP) (41) and BayesCπ
approaches (42) to predict hybrid performance using genomic as well as
metabolomic data. We considered prediction approaches including additive,
dominance as well as additive × additive, additive × dominance, and dom-
inance × dominance digenic epistatic effects. Details of model implementation
are provided in SI Appendix, Note h. We evaluated the accuracy of predicting
grain yield using chessboard-like cross-validation as well as the reliability cri-
terion. Details are provided in SI Appendix, Note b.

We used the predicted hybrid performance matrix of all 9,045 single
crosses and searched for a high-yielding heterotic pattern based on our
simulated annealing algorithm. Implementation and evaluation of the al-
gorithm are described in detail in SI Appendix, Note e. We assessed the long-
term success of the identified heterotic pattern by estimating usefulness,
selection limit, and representativeness of the heterotic pattern with respect
to a defined base population (SI Appendix, Note e).
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