








Fig. 6. Progressive forest canopy water stress for the years 2011–2015, computed as the total percentage CWC loss for the study period. Inset graph indicates
the mapped forest area and estimated maximum number of trees (≥12.7 cm or 5 inches diameter at breast height) affected in differing CWC loss classes. Black
areas indicate fire extents reported between 2011 and 2015 by the US Forest Service (31).
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red fir, and black oak forests underwent widespread water losses.
Only the highest-elevation forests and patches of lower-elevation
forests and woodland types showed less (but still measurable)
losses in CWC.

Forest Monitoring in a Changing Climate. To our knowledge, our
results are the first to reveal progressive forest canopy water loss
resulting in highly suppressed canopy water content in many
regions of California. By August 2015, much of the state had
undergone a measurable decrease in forest CWC since 2011.
Over approximately the same time period, low-altitude visual
mapping studies conducted by the US Forest Service estimated
that roughly 27 million trees died in California forests (7, 33, 34).
Major differences in mapping approach preclude a direct com-
parison of our method to aerial tree counts: Aerial surveys of
brown and leafless trees suggest increasing mortality rates over
time, whereas our modeled changes in canopy water content serve
more of a prognostic role in terms of potential mortality. None-
theless, map-to-map comparisons indicate a similar overall geo-
graphic pattern of canopy water loss (Fig. 6) and mortality (7, 33).
Importantly, our measurements reveal far higher levels of

drought-affected forest than can be assessed using visual map-
ping approaches. We found massive areas of progressive canopy
water stress that are geographically aligned with a growing
population of observed dead trees. Moreover, if drought con-
tinues or reoccurs, there exists a pool of trees spread over mil-
lions of hectares of forest that may undergo sufficient CWC loss
to result in death. Based on rates of CWC change observed
during the drought (Fig. 5), this pool could increase into the
hundreds of millions of trees.
Given the wide variety of forest and woodland environments

found throughout California, and their variable CWC losses
during the 2012–2015 drought, repeated airborne and satellite
surveys will be needed to assess longer-term impacts. By com-
bining CWC monitoring with field inventory, it should be pos-
sible to develop a capability to predict mortality. Until then, our
approach uniquely identifies trees and landscapes of changing
vulnerability as climate conditions evolve over time.
CWC monitoring yields spatially explicit information to sup-

port innovations in forest conservation, management and re-
source policy development at multiple scales. The options vary
depending upon the scale-dependent technological steps de-
veloped and presented here. High-resolution, aircraft-based
CWC measurements provide new data on millions of hectares of
forest and generate detail on a tree-by-tree basis (Fig. 1). Potential
applications of HiFIS data include implementation of prescribed

fire, firebreaks, and other fire-management approaches, hazardous
tree removal, ecological corridor and habitat management, and
watershed management. At the broad state level, the 30-m reso-
lution models reveal the full extent and depth of impact of drought
on California’s entire forest canopy. The findings strongly suggest
that if drought continues, even with a potential temporary reprieve
via a 2015–2016 El Niño (35), we can expect continuing forest
change at the regional scale. Long-term resource policy and de-
cision-making efforts may consider such impacts on forest re-
sources, such as by assessing geographically explicit increases in
carbon emissions where tree mortality occurs, versus increases in
carbon sequestration following tree species migration (e.g., higher
elevations). Planning for corridors of species migration in Cal-
ifornia, such as by expanding protected areas and limiting infra-
structural development, is one example strategic use of the new
information derived from imaging spectroscopy.
In the context of forest management and resource decision-

making, current mainstream satellite technologies provide in-
formation only on forest cover, deforestation, and other physical
disturbances to forest canopies (36). We currently lack a mission to
place a high-fidelity imaging spectrometer into Earth orbit. Such a
device will deliver continuous measurements of vegetation canopy
water content, along with several other Earth surface chemicals
(22, 37). The NASA HyspIRI imaging spectrometer remains in a
premission phase of study (11), yet it lacks a clear plan or schedule
for deployment. Such a mission could greatly enhance our ability to
measure, monitor, and map changes in biospheric composition and
function in the face of climate change.

Methods
To assess the effect of progressive drought on California forests, HiFIS and
LiDAR data were collected using the Carnegie Airborne Observatory (26). The
CAO sensor package includes a dual-laser waveform LiDAR system and a
HiFIS that measures in the 380- to 2,510-nm wavelength range (SI Appendix).
The CAO is able to collect up to 6 ha/s of data during flight. Even at this rapid
rate it is unrealistic to provide wall-to-wall coverage of California’s ∼13.4
million ha of forest. Moreover, even complete coverage would provide only
an instantaneous view in time of CWC. Instead, our approach builds upon
established methods for using noncontinuous airborne data to train a
portfolio of geographically contiguous data to generate statewide geo-
graphic models of forest CWC (SI Appendix).
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