Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia

Koichi Oshimaa,1, Hossein Khianiabb,c,d,1, Ana C. da Silva-Almeidaa, Gannie Tzonevaa, Francesco Abateb,c, Alberto Ambesi-Impiombatob, Marta Sanchez-Martina, Zachary Carpenterb,c, Alex Pensonb,c, Arianne Perez-Garciaa, Cornelia Eckerte,f, Concepción Nicolasg,h, Milagros Balbíni,m, Maria Luisa Sulisj,k, Motohiro Katoj, Katsuyoshi Kohj, Maddalena Paganink, Giuseppe Bassok, Julie M. Gastier-Fosterl,m,n,o, Meenakshi Devip, Mignon L. Lohq,r, Renate Kirschnер-Schwabea,f, Teresa Palomeroa,s,t, Raul Rabadab,c, and Adolfo A. Ferrandoa,i,s,2

aInstitute for Cancer Genetics, Columbia University, New York, NY 10032; bDepartment of Systems Biology, Columbia University, New York, NY 10032; cDepartment of Biomedical Informatics, Columbia University, New York, NY 10032; dRutgers Cancer Institute, Rutgers University, New Brunswick, NJ 08903; eDepartment of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; fGerman Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany; gHematology Service, Hospital Central de Asturias, 33011 Oviedo, Spain; hMolecular Oncology Laboratory, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; iDepartment of Pediatrics, Columbia University Medical Center, New York, NY 10032; jDepartment of Hematology-Oncology, Saitama Children's Medical Center, Saitama 339-8551, Japan; kOnco-Hematology Division, Department, Salute della Donna e del Bambino (SDB), University of Padua, 35128 Padua, Italy; lDepartment of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205; mDepartment of Pathology, Ohio State University School of Medicine, Columbus, OH 43210; nDepartment of Pediatrics, Ohio State University School of Medicine, Columbus, OH 43210; oChildren's Oncology Group, Arcadia, CA 91006; pDepartment of Biostatistics, University of Florida, Gainesville, FL 32611; qDepartment of Pediatrics, University of California, San Francisco, CA 94143; rHelen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115; and tDepartment of Pathology, Columbia University Medical Center, New York, NY 10032

Edited by Louis M. Staudt, National Cancer Institute, NIH, Bethesda, MD, and approved August 9, 2016 (received for review May 25, 2016)

Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemoresistant disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein environments (9, 10), and selection of secondary genetic alterations promoting chemotherapy resistance in leukemic lymphoblasts (11–13). In this regard, early studies described the presence of tumor protein p53 (TP53) mutations in relapsed ALL, supporting a role for escape from genotoxic stress in leukemia progression (14). Similarly, loss of nuclear receptor subfamily 3 group C member 1 (NR3C1) encoding the glucocorticoid receptor has been associated with acute lymphoblastic leukemia | relapsed leukemia | chemotherapy resistance | genome sequencing

Significance

Relapsed acute lymphoblastic leukemia (ALL) is associated with chemotherapy resistance and poor prognosis. This study analyzes the emergence of acquired mutations in relapsed ALL samples, identifying genes implicated in disease progression and defining the process of clonal evolution leading to relapse. These analyses revealed that ALL relapse emerges from subclonal populations sharing only part of the mutations present in the dominant leukemia population found at diagnosis. Moreover, we show mutations in genes implicated in chemotherapy resistance pathways at relapse. RAS mutations are highly prevalent in high-risk ALL, yet their capacity to confer resistance to methotrexate and sensitivity to vincristine, two core drugs used in the treatment of ALL, influences their positive or negative selection at relapse.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The sequences reported in this paper has been deposited in the dbGaP database (accession no. phs001072.v1.p1).

K.O. and H.K. contributed equally to this work.

1To whom correspondence may be addressed. Email: af2196@columbia.edu, tp2151@columbia.edu, or nr2579@columbia.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608420113/-/DCSupplemental.
relapse in ETV6-RUNX1 rearranged leukemias (15). In addition, mutations disrupting the genes encoding for the CREB binding protein (CREBBP), a histone acetyl transferase implicated in glucocorticoid response (16), and a number of other epigenetic factors (17) have been associated with relapse. Finally, genomic profiling of diagnostic and relapsed leukemias has identified relapse-associated mutations in the 5′-nucleotidase, cytosolic H (NT5C2) gene as drivers of resistance to thiopurine chemotherapy in about 20% of T-ALL and 5% of B-precursor ALL cases at relapse (11, 12, 18). However, the genomic landscape of relapse remains largely unexplored, and the mechanisms mediating escape from therapy, disease progression, and leukemia relapse remain incompletely understood.

Results

To explore the landscape of genetic alterations involved in relapsed ALL, we performed whole-exome sequence analysis of matched diagnosis, germ line (remission), and relapse DNA samples in a panel of 55 pediatric ALL patients including 33 T-cell ALLs and 22 B-cell precursor ALLs (Datasets S1 and S2). Somatic mutation variant calling using the SAVI algorithm (19) identified an average of nine mutations present in diagnostic samples and 17 mutations in relapsed leukemia DNAs (SI Appendix, Figs. S1 and S2 and Datasets S3 and S4). Recurrently somatically mutated genes in our series included known oncogenes and tumor suppressors mutated in B-cell precursor ALL (KRAS, NRAS, Fms related tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), Janus kinase 3 (JAK3), and CREBBP) (20) and T-cell ALL [Notch1 (NOTCH1), FBXW7, PHF6, DNMT2, WT1, IAK1, JAK3, BCL11B, TP53, CREBBP, RPL10, RUNX1, and CNOT3] (16, 21–27). In addition, we also identified recurrently all mutated genes including ZFHX3, ubiquitin specific peptidase 9, X-linked (USP9X), calcium voltage-gated channel subunit alpha 1 (CACNA1H), EPHA3, SHROOM3, USP7, RPRG, 5-hydroxytryptamine receptor 3A (HTR3A), mediator complex subunit 12 (MED12), teneurin transmembrane protein 3 (TENM3), and IL17RA (Fig. 1, SI Appendix, Fig. S3, and Datasets S3 and S4). Copy number analyses identified an average of 10.4 somatic copy number variants (CNVs) per sample (8.7 in T-cell ALL and 13.1 in B-cell precursor ALL) for a total of 501 alterations in our series. Of these, 248 CNVs were detected at diagnosis and 253 at the time of relapse, with 180 variants present in both diagnostic and relapsed samples (SI Appendix, Figs. S4 and S5 and Dataset S5).

Analysis of the genomic landscape of relapsed ALL revealed a branched pattern of clonal evolution in 41 of 48 (85%) of the cases in which relapsed samples contained only some of the genetic lesions present in the major clone at diagnosis (Fig. 2 and SI Appendix, Fig. S6). In addition, five relapsed leukemia samples in this series (samples 5, 9, 14, 18, and 38) contained most but not all of the mutations present at diagnosis. Finally, in the remaining 2 of the 48 (4%) cases (samples 21 and 39), the relapsed clones contained all protein-coding genetic mutations present at diagnosis plus additional secondary relapse-specific lesions. For these and for an additional case with a pattern at the boundary between linear and branched evolution (sample 38), we performed whole-genome sequencing of matched diagnosis, germ line (remission), and relapse DNA samples (SI Appendix, Fig. S7 and Dataset S6). We identified 3,868 noncoding mutations including 394 located <5 Kb downstream, 1,762 intergenic, 1,621 intronic, 81 <5 Kb upstream, 7 UTR 3′, 2 UTR 5′, and 1 intragenic variants. Of these, 51 were diagnosis-specific, 1,892 were relapse-specific, and 1,925 were shared between both relapse and diagnosis. These analyses demonstrated clear branched evolution, with the emergence of relapse clones showing partial overlap with the mutations present at diagnosis and containing additional relapse-specific mutations in all three cases analyzed (SI Appendix, Fig. S7). These results support that linear evolution is rarely involved in tumor progression and that relapsed ALLs originate primarily by branched evolution as derivatives of ancestral subclones related to but distinct from the main leukemic population present at diagnosis (SI Appendix, Fig. S8).

Several relapse ALL-associated mutant genes were functionally related to the mechanisms of action of chemotherapy. We identified the presence of heterozygous, relapse-specific mutations in the NT5C2 gene, which encodes a cytosolic nucleotidase involved in the clearance of cytotoxic metabolites of 6-thioguanine and 6-mercaptopurine in 10 of 55 (18%) cases [1 of 22 (5%) in B-cell precursor ALL; 9 of 33 (27%) in T-cell ALL]. These included three previously characterized gain-of-function NT5C2 alleles (NT5C2 R238W, NT5C2 K359Q, and NT5C2 R367Q) involved in thiopurine resistance (11, 12), two mutations at positions altered in previously reported NT5C2 gain-of-function alleles [NT5C2 D407E and NT5C2 (S445F,R446Q)], and one NT5C2-activating mutation (NT5C2 R478S) (Fig. 1B, SI Appendix, Fig. S9, and Dataset S3). We also identified three T-cell ALLs with mutations in the TP53 gene (3 of 33, 9%), one of which was specifically selected at the time of relapse (Fig. 1A and B, SI Appendix, Fig. S3, and Dataset S3), and two relapsed-specific mutations in the glucocorticoid receptor gene (NR3C1) (Fig. 1A and B, SI Appendix, Fig. S3, and Dataset S3). Ultra-deep sequencing analysis of NT5C2 (n = 7), TP53 (n = 2), and NR3C1 (n = 2) mutations in the corresponding diagnostic DNA samples failed to identify these resistance-driving mutations with 0.5% sensitivity, suggesting that they were present in small subclones or were acquired during disease progression. In addition, we identified truncating mutations and single amino acid substitutions disrupting the histone acetyl transferase domain of CREBBP in four cases [4 of 55 (7%); 2 of 22 (9%) B-cell precursor ALLs; 2 of 33 (6%) T-cell ALLs], including three patients with mutations positively selected at the time of relapse (Fig. 1A and D, SI Appendix, Fig. S3, and Dataset S3). Further analysis of relapse-associated epigenetic factor mutations in our series revealed 3 of 55 (5%) mutations in the lysine methyltransferase 2D (KMT2D) gene, also known as myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), two of which were selected at relapse (Fig. 1A and D, SI Appendix, Fig. S3, and Dataset S3). However, 23 of 27 (85%) of all recurrently mutated genes in this series were mutations whose alterations were preferentially selected or retained at the time of relapse (mutation never lost in the relapse clone) were not previously implicated in relapse ALL (HTR3A, MED12, USP9X, CACNA1H, TENM3, AACS, SAMD4A, ANO5, PAPPA, NAALADL2, HIST3H2A, FZD7, TBX15, NEB, GREB1L, PLXNA4, SGK223, TSC1, PITPB, PFGT10, SYCP2, TRPM3, and EYS) (Fig. 1A and C–E, SI Appendix, Fig. S12). In total, we identified recurrent mutations in 18 genes harboring recurrent mutations positively selected during disease progression in a series of 49 paired diagnosis and relapse B-cell precursor ALL cases analyzed by RNA-seq (Dataset S7) and in an extended series of 230 relapsed B-cell precursor ALLs evaluated by targeted deep sequencing (Dataset S8) confirmed and extended these results, revealing additional mutations in NT5C2 (13 of 279, 4.6%), NR3C1 (7 of 279, 2.5%), CREBBP (29 of 279, 10%), KMT2D (11 of 279, 4%), JAK2 (17 of 279, 6%), JAK3 (18 of 279, 6.5%), and TP53 (18 of 279, 6.5%) (SI Appendix, Fig. S10). In all, 160 of 279 (57%) cases in these validation series showed at least one driver relapse-associated mutation. In addition, analysis of experimentally established protein–protein interactions across the products of 153 genes harboring at least one mutation gained at relapse in our series revealed a network structure in which most interactions converged on a limited number of highly connected proteins (SI Appendix, Fig. S11). Notably, the highest connected nodes in this circuitry encompassed the products of key genes whose mutations can drive chemotherapy resistance (TP53, CREBBP, and NR3C1) (SI Appendix, Fig. S11).

An additional notable finding in our relapsed ALL exome mutation analysis was the presence of highly prevalent mutations activating the RAS-MAPK signaling pathway (Fig. 1C and SI Appendix, Fig. S3). These included activating mutations in KRAS in 11 of 55 (20%) cases (7 of 22, 32% B-precursor ALL; 4 of 33, 12% T-ALL), gain-of-function mutations in NRAS in 13 of 55 (24%)
cases (4 of 22, 18% B-precursor ALL; 9 of 33, 27% T-ALL), and one activating mutation in the PTEN11 (PTEN11 G503R) phosphatase gene previously reported in Noonan syndrome (28, 29) (Fig. 1C, SI Appendix, Fig. S3, and Dataset S3). Similar results were observed in our validation cohort of paired diagnosis and relapse samples analyzed by RNA-seq [KRAS mutations, 9 of 49 (18%); NRAS mutations, 12 of 49 (20%)] and in our panel of relapsed samples analyzed by targeted deep sequencing [KRAS mutations, 35 of 230 (15%); NRAS mutations, 32 of 230 (15%)] for an overall prevalence of 113 of 334 (34%) RAS-MAPK–activating mutations in high-risk ALL. The high prevalence of RAS mutations in our relapsed leukemia series is consistent with previous reports (18, 30, 31) and differs from the results obtained from the analysis of unselected pediatric ALLs, which showed a markedly lower frequency of activating mutations in NRAS (5 of 41, 12%) and KRAS (0 of 41, 0%) (Fisher’s exact test P < 0.005), suggesting that aberrant MAPK signaling could be a prominent driver oncogenic mechanism in high-risk ALL. However, we noted that although most cases with NRAS and KRAS mutations present at diagnosis were recovered at relapse (12 of 24, 50%) and others showed emergence of a different RAS mutant allele (1 of 24, 4%) or of new RAS mutant clones at relapse (6 of 24, 25%), some patients with NRAS and KRAS mutations at diagnosis relapsed at the expense of RAS wild-type clones (5 of 24, 21%).

To evaluate the specific role of RAS-MAPK–activating mutations in chemotherapy resistance, we generated isogenic leukemias via retroviral transduction and bone marrow transplantation of hematopoietic progenitors from Lox–stop–lox (LSL)-KrasG12D mice (32) infected with retroviruses expressing an oncogenic form of NOTCH1 (ΔE-NOTCH1) (SI Appendix, Fig. S12). In this model, introduction of Cre recombinase induces the expression of the mutant Kras G12D from the endogenous Kras locus with consequent activation-increased MAPK signaling (Fig. 3 A and B and SI Appendix, Fig. S13). Notably, drug response analyses in isogenic Kras wild-type and Kras G12D cells showed increased resistance to methotrexate (P < 0.001) upon oncogenic Kras activation (Fig. 3 C–E and SI Appendix, Fig. S14). Consistently, Kras G12D mutant cells were enriched over their Kras wild-type counterparts in mixed cultures under selection with methotrexate (SI Appendix, Fig. S15). Moreover, suppression of MAPK signaling with the U0126 and the PD0325901 MEK inhibitors (33) showed increased antileukemic activity in Kras G12D mutant cells and enhanced the cytotoxic activity of methotrexate (Fig. 3 F and G and SI Appendix, Figs. S16–S20). Furthermore, expression of activating mutant KRAS proteins in human CUTTL1 and JURKAT ALL cell lines induced resistance to methotrexate chemotherapy (Fig. 3 H and I and SI Appendix, Figs. S21 and S22). Notably, this methotrexate resistance phenotype correlated with the strength of MAPK activation as expression of a double Kras G12D Q61R mutation induced higher levels of MAPK phosphorylation and more robust methotrexate resistance than expression of the single Kras G61R mutant allele (Fig. 3 H and I). There were no significant differences in the response to dexamethasone, daunorubicin, cytarabine, and mafosfamide between mutant Kras G12D and isogenic wild-type ALL cells (SI Appendix, Fig. S23). However, we observed a reproducible increase in sensitivity to vincristine treatment in Kras G12D mutant cells with decreased viability (Fig. 4 A and B and SI Appendix, Fig. S14), increased apoptosis (Fig. 4 B and C), and enhanced G2/M cell-cycle arrest (Fig. 4 D and E and SI Appendix, Fig. S24) compared with wild-type isogenic controls. Moreover, Kras wild-type cells were enriched over their isogenic Kras G12D mutant counterpart cells in mixed cultures under vincristine selection (SI Appendix, Fig. S25). Of note, Kras activation was associated with increased Polo-like factors (E) are represented. Black circles indicate amino acid substitutions; red circles indicate truncating mutations.

Fig. 1. Somatic mutations in relapsed ALL. (A) Circus plot representation of the distribution of diagnostic, relapse, and common diagnosis and relapse mutations involving selected recurrently mutated genes. (B–E) Schematics of the protein structures showing mutations recurrently identified in diagnostic and relapse ALL samples. Proteins involved in chemotherapy resistance (B), signaling (C), epigenetic regulation (D), and other recurrently mutated
Kinase 1 activation loop phosphorylation (T210) (Fig. 4F), a post-translational modification implicated in the control of mitotic entry (34) and recovery after checkpoint-dependent G2 arrest (35, 36). Moreover RNA-seq analysis of isogenic Kras G12D and Kras wild-type cells showed down-regulation of mitotic signature genes upon activation of oncogenic Kras (Fig. 4G), further supporting a role of mutant Kras in mitotic deregulation. As before, expression of mutant Kras (G12D) in human ALL cell lines increased sensitivity to vincristine (Fig. 4H and SI Appendix, Fig. S26). Finally, gene expression analyses of human B-precursor ALLs with or without KRAS mutations revealed a significant enrichment of a gene signature associated with increased sensitivity to vincristine (37) in KRAS mutant samples (Fig. 4I and J), an effect confirmed in analogous analyses using expression signatures associated with KRAS and NRAS mutant samples (SI Appendix, Fig. S27).

Discussion

Here we have dissected the mutational landscape of relapsed ALL, analyzed the pattern of clonal evolution associated with relapse in this disease, and explored the mechanisms underlying the mixed pattern of positive and negative selection of RAS mutations associated with leukemia progression. Consistent with previous genomic studies (26, 38), pediatric ALL leukemia samples in our series showed a low burden of exonic mutations and copy number alterations at diagnosis. Moreover, and with the exception of one T-ALL tumor, which showed a marked increase in mutation load at relapse, the mutation load of these leukemias was only modestly increased at relapse. Mechanistically, mutation pattern analyses support that ALL mutations originate by spontaneous deamination during tumor initiation and that this mutation mechanism is also characteristic at the time of relapse (39). A corollary of these findings is that chemical mutagenesis, characteristically associated with increased frequency of transversions (40), does not seem to represent a major driver of tumor initiation or relapse-associated mutations in ALL. This is in contrast with findings in acute myeloid leukemia, where analysis of relapse genomes has evidenced an
Vincristine sensitivity induced by some but not all mutations present in the diagnostic sample. This finding is in agreement with recent genomic studies in ALL (11, 18) and contrasts with clonal evolution studies in acute myeloid leukemia, which have documented a more heterogeneous pattern of clonal evolution with some relapses emerging as a result of branched evolution and others resulting from the linear acquisition of secondary mutations in the main diagnostic clone (41). Numerous mechanisms probably converge in the selection of relapse ALL clones at relapse, particularly considering the complexity of multiagent chemotherapy protocols used in the treatment of this disease. However, our analysis of protein–protein interaction networks of relapse-associated mutant factors supports that, at least in part, relapse-associated mutations may converge in common nodes related to escape from DNA damage response (TP53) and glucocorticoid resistance (CREBBP and NR3C1). The positive selection of resistance-driving genetic alterations at relapse implies that chemotherapy inflicts a strong Darwinian selection for drug resistance and argues against genetic drift of passenger mutations or competition for empty bone marrow niche space after chemotherapy as drivers of clonal evolution during leukemia progression.

RAS-activating mutations are rare in unsellected newly diagnosed ALL, yet they were present in over 40% of ALL matched diagnosis-relapsed samples, supporting an association of these genetic alterations with high-risk ALL. However, the pattern of clonal evolution of RAS mutations is highly heterogeneous, with some leukemias showing retention of the diagnostic-associated RAS mutations at relapse and some others showing gain or loss of RAS mutations during disease progression. This phenomenon, first reported in early mutation analyses over 25 y ago (43) and recently confirmed in the context of contemporary therapies (18, 31), supports that RAS mutations are frequently subclonal and that the evolutionary pressure imposed by multiagent chemotherapy can result in positive but also negative selection of RAS mutant clones at relapse. Functional analyses of RAS mutations in mouse primary isogenic leukemia lymphoblasts and in human cell lines supports a role of RAS-MAPK signaling in methotrexate resistance but also, and most unexpectedly, implicates oncogenic RAS in the deregulation of the mitotic machinery and in increased sensitivity to vincristine. The development of leukemia models with subclonal RAS mutations will facilitate the analysis of clonal evolution of RAS mutant populations at different stages of disease progression and in the context of chemotherapy treatment in vivo. In addition, analysis of serial leukemia clinical samples from ALL patients receiving multiagent therapy will facilitate better understanding of the dynamics of RAS mutant clones in the context of clinically relevant drug exposure in vivo. Finally, it is worth noting that although less frequent, activating mutations in other signaling factors (e.g., JAK2 and FLT3) also showed a mixed pattern of clonal selection at relapse, which warrants further studies to evaluate their potential differential response to cytotoxic drugs in ALL.

Materials and Methods

DNA from leukemic ALL blasts at diagnosis and relapse and matched remission lymphocytes were obtained with informed consent in a multi-institutional setting. Informed consent was obtained at study entry, and samples were collected under the supervision of local Institutional Review Boards for participating institutions and analyzed under the supervision of the Columbia University Medical Center Institutional Review Board. We selected samples for whole-exome and whole-genome sequencing on the basis of the availability of sufficient DNA from diagnosis, remission, and relapse samples. Sample size was determined to have 95% power to detect recurrent mutations present in over 5% of samples and 78% power to detect these as recurrent in at least two samples. Animal procedures were performed in accordance and with approval from the Columbia University Institutional Animal Care and Use Committee.

Genomic Analyses. Whole-exome sequencing was performed using the Agilent SureSelect Human 51 Mb All Exon V4 kit (Agilent Technologies) platform and paired-end sequencing on the Illumina HiSeq2000 System. Somatic sequence variants were identified using the SAVI algorithm (19). Somatic CNVs

![Fig. 4. Vincristine sensitivity induced by Kras G12D expression in ALL.](image_url)

(A) Cell viability assays in mouse Kras wild-type and isogenic Kras G12D-expressing ALL cells treated with vincristine (VCR). (B) Representative dot plots of flow cytometry analysis of cell viability and apoptosis in mouse Kras wild-type and isogenic Kras G12D-expressing ALL cells treated with vincristine (5 nM) for 24 h. (C) Quantitative analysis of cell viability in mouse Kras wild-type and isogenic Kras G12D-expressing ALL cells treated with vincristine (5 nM) for 24 h. (D) Representative histograms of cell-cycle distribution in mouse Kras wild-type and isogenic Kras G12D-expressing ALL cells treated with vincristine (5 nM) for 24 h. (E) Quantitative analysis of cell-cycle distribution in mouse Kras wild-type and isogenic Kras G12D-expressing ALL cells treated with vincristine (5 nM) for 24 h. (F) Western blot analysis of Polo-like kinase 1 (Plk1) phosphorylation (T210) in Kras wild-type and isogenic Kras G12D ALL cells. (G) Gene set enrichment plots corresponding to gene set enrichment analysis of mitotic cell-cycle genes in the transcriptional signature of mouse Kras wild-type versus isogenic Kras G12D ALL cells. (H) Viability assays in CUTL1 ALL cells treated with vincristine in basal conditions (Vehicle) and upon doxorubicin-induced (Dox) 100 ng/mL expression of KRAS Q61H or the double mutant KRAS G12D/Q61H. (I) Gene set enrichment plot corresponding to GSEA analysis of genes down-regulated in vincristine sensitivity in relapsed B-ALLs with or without mutations in KRAS. (J) Gene set enrichment plot corresponding to GSEA analysis of genes up-regulated in vincristine sensitivity in relapsed B-ALLs with or without mutations in KRAS. Quantitative data are shown as means ± SD.
were identified from the depth of coverage using EXCAVATOR (44). Whole-genome sequencing libraries were prepared using the Illumina TruSeq Nano DNA Sample Prep Kit and sequenced using the HiSeq X Ten instrument (Illumina). Paired-end (2 × 150 bp) reads were aligned to the GRCh37 human reference using the Burrows-Wheeler Aligner (BWAalin) (45). Variant callers multiTect v1.1.4 (46) and Strelka v1.0.12 (47) (for both SNVs and indels) were used, and the resulting SNV and indels were annotated via snpEff (48). For analysis of RNAseq samples, we identified variants in 18 selected relapse-associated genes using the SAVI algorithm. We identified variants that differed from the reference genome in targeted sequencing data on 614 amplicons from 18 genes generated using the Access Array system from Fluidigm and analyzed by paired-end sequencing (2 × 150 bp) in a NextSeq500 instrument (Illumina) using the SAVI algorithm.

In Vitro Studies. We determined cell viability by measurement of the metabolic reduction of the tetrazolium salt MTT using the Cell Proliferation Kit I (Roche) following the manufacturer's protocol.

We performed Western blot analysis using antibodies recognizing P-ERK1/2 (P-44/42 MAPK [T202/Y204] 1:1,000; 4377, Cell Signaling Technology), ERK1/2 (1:250; sc-27777, Santa Cruz Biotechnologies), PLK1 [P-T210] (1:1,000; Abcam), PLK [F8] (1:50; sc-17783, Santa Cruz Biotechnologies), and GAPDH (1:7,000; 5174, Cell Signaling Technology), following standard procedures.

Statistical Analyses. Analyses of significance were performed using Student's t test assuming equal variance and Fisher's exact test. Continuous biological variables were assumed to follow a normal distribution. A two-sided P value of <0.05 was considered to indicate statistical significance.

ACKNOWLEDGMENTS. This work was supported by a Leukemia & Lymphoma Quest for Cures award to (A.A.F.); an Innovative Research award to (A.A.F.); a Phillip A. Sharp Innovation in Collaboration award by Stand Up to Cancer to (A.A.F.); the St. Baldrick's Foundation (A.A.F.); the Chemotherapy Foundation (A.A.F.); the Swim Across America Foundation (A.A.F.); NIH Grants R01 CA185486 to (R.R.), U54 CA193313 to (R.R.), and U10 CA98543 to (J.M.G.-F. and M.L.L.); Human specimen Banking Grant U24 CA114766 to (J.M.G.-F.); CarisBio and Istituto di Ricerca Pediatrica-Città della Speranza (IRP) Foundation (G.B.); and the Stewart Foundation (R.R.). G.T. is a Howard Hughes Medical Institute International Student Research Fellow. M.S.-M. is a Rally Foundation fellow.