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Fig. 3. Adult Wnt5a mutant mice show a progressive decline in hippocampus-
mediated behaviors. (A and B) WT mice show a significant preference for ex-
ploring a new object in the novel-object recognition task, whereas Wnt5a KO
mice spent similar amounts of time with familiar and new objects. Deficits in
recognition memory were evident in both 3- and 6-mo-old mutants. Dashed line
indicates equal amount of time spent exploring new and familiar objects. Results
are mean + SEM from n =21 WT mice and n = 19 KO mice at 3 mo, and n =16 WT
mice and n = 23 KO mice at 6 mo. *P < 0.05, **P < 0.01 significantly different
from 50% time spent with the novel-object, two-tailed t test. (C) Timeline for the
Morris water maze (MWM) tasks. (D) Three-month-old KO mice show impaired
spatial learning in the Morris water maze test. Results are mean + SEM from n =
20 WT and n = 19 KO mice. *P < 0.05, **P < 0.01, two-way ANOVA with Fisher's
least-significant difference (LSD) post hoc test. (E) Six-month-old KO mice exhibit
more severe deficits in learning and fail to acquire the latency of control animals
even on day 12. Results are mean + SEM from n = 18 WT and n = 20 KO mice.
*P < 0.05, **P < 0.01, ***P < 0.001, two-way ANOVA with Fisher’s LSD post hoc
test. (F and G) During probe trials, 3- and 6-mo-old KO mice showed less prefer-
ence for the target quadrant compared with WT mice. Results are mean + SEM,
*P < 0.05, **P < 0.01, two-tailed t test. (H and /) During the memory retention
test, both 3- and 6-mo-old KO mice spent less time in the target quadrant com-
pared with control littermates. However, older mutant mice exhibited a marked
decay in memory retrieval by the fifth day of the probe trial. White dashed line
indicates 25% of time that mice spent in the target quadrant. Results are mean +
SEM; *P < 0.05, **P < 0.01, ***P < 0.001 significantly different from control
littermates; *P < 0.05 significantly different from 25% line, two-tailed t test.

effector pathways: the canonical f-catenin—dependent pathway, a
Ca”*-dependent pathway, and the planar cell polarity pathway
(47). We found comparable levels of nuclear f-catenin and
Axin2, c-myc, and NeuroD1, all transcriptional targets of ca-
nonical p-catenin signaling (48), between CaMKII-Wnt5a™" and
control Wat5a™" hippocampus at 3 mo (Fig. S5 A-C), indicating
that canonical Wnt signaling is unaffected by Wnt5a depletion in
the mature hippocampus.

We next assessed the Wnt—calcium pathway, where Wnt ligands
promote an increase of cytoplasmic Ca** (49, 50). Strikingly,
Wnt5a treatment acutely elicited a calcium response in 92% of
cultured rat hippocampal neurons transfected with GCaMP3,
whereas only 43% of neurons responded to control treatment.
Furthermore, the number of calcium transients was fivefold
higher in Wnt5a-treated neurons (Fig. 4 A-C and Movies S1 and
S2). We then performed biochemical analyses to assess activa-

Chen et al.

tion of CaMKI]I, a critical regulator of hippocampal connectivi
and functions (51, 52), in vivo, in young adult CaMKII-Wnt5a""
mice at 3 mo before the appearance of structural anomalies.
Using a phospho-specific antibody that detects activated CaMKII
(threonine 286 phosphorylation on CaMKIla and T287 on
CaMKIIp) (53), we found a pronounced attenuation of phos-
phorylated CaMKIIa (59% decrease) and CaMKIIp (57% de-
crease) in CaMKII-Wnt5a"" mice (Fig. 4 D and E). CaMKII-
mediated phosphorylation of the GluA1l subunit of AMPA-type
glutamate receptors at a critical serine 831 site (54, 55) has been
functionally linked to synaptic plasticity and retention of spatial
memory in mice (56, 57). We found a marked decrease in
phospho-S831-GluA1l in postsynaptic density fractions from the
mutant hippocampus (Fig. 4 D and E). These results suggest
decreases in phosphorylation of CaMKII and GluAl as the
molecular underpinnings for the impairments in synaptic plas-
ticity and spatial memory in CaMKII-Wnt5¢™" mice.

Calcium signaling within synapses could couple to transcrip-
tional responses via shuttling of a Ca**/CaM/CaMKIIy complex
to the nucleus to promote phosphorylation of CaMKIV, which
then phosphorylates and activates the transcription factor CREB
(58). Phosphorylation of CaMKIV and CREB were significant]
reduced in nuclear fractions from 3-mo-old CaMKII-Wnt5a""
hippocampeal tissues (Fig. 4 F and G). Because Wnt5a deletion
altered nuclear CREB phosphorylation, we assessed levels of
several synaptic proteins (Fig. S5 D and E) and found that only
GluN1, the obligatory NMDA receptor subunit, was decreased
(Fig. 4 H-J), raising the possibility that GIuNI transcription is
CREB-dependent. We did not observe any changes in levels
of other NMDA receptor subunits, GluN2a/2b, that are coex-
pressed and coassembled in the endoplasmic reticulum (ER)
with GIuN1, in the mature hippocampus (Fig. 4 H-J). We
identified three putative CRE sites (CRE! at —212 bp, CRE?2 at
—238 bp, and CRE3 at —770 bp) in a 1-kb region upstream of the
transcription start site in the mouse GluNI promoter (Fig. 4K).
In a dual luciferase assay, Wnt5a stimulation of hippocampal
neurons for 6 h significantly increased luciferase activity com-
pared with control treatment (Fig. 4 K and L). Mutation of just
the two proximal CRE elements (—212 to —216 bp and —238 to
—242 bp) abolished Wnt5a-induced luciferase activity (Fig. 4L).
These results reveal an unexpected role for Wnt5a in enhancing
GluN1 transcription through a noncanonical pathway that in-
volves calcium-CaMKII-CREB activation.

We finally examined the planar cell polarity pathway where
noncanonical Wnts induce cytoskeletal dynamics by activating
small GTPases, such as Racl and JNK signaling (59). Racl is a
critical regulator of the actin cytoskeleton in dendrites and spines
(60, 61). Active Racl-GTP and phospho-JNK levels were sig-
nificantly reduced in hippocampal homogenates prepared from
3-mo-old CaMKII-Wnt5a"" mice (Fig. 4 M-P). Racl activity can
also be influenced by CaMKII activity via CaMKII-mediated
phosphorylation of the Racl-specific GEFs, Tiam1 and Kalirin-7
(62, 63). Taken together, these results suggest that Wnt5a signals
via CaMKII and Racl-mediated signaling, as well as CREB-
mediated GluN1 synthesis to maintain synaptic plasticity and
structure in the adult hippocampus.

Late Induction of Wnt5a Reverses Dendrite Attrition. Our results
show that adult Wnt5a-deficient mice have profound defects in
hippocampal synaptic plasticity, dendrite morphology, and re-
lated molecular changes. Could restoring Wnt5a expression
prevent or even correct synaptic signaling and dendritic defects
in adult CaMKII-Wnt5¢™" mice? To address this question, we
expressed WntSa using an adeno-associated virus (AAV) virus
carrying a Cre-dependent WntSa transgene, DIO-Wnt5a, in
CaMKII-Wnt5a™" mice. First, to address if Wnt5a expression
rescues signaling defects observed at 3 mo, we delivered Wnt5a
at this time point and performed biochemical analyses at 2 wk
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Fig. 4. Wnt5a loss disrupts calcium and cytoskeletal signaling and decreases CREB-mediated GIuN1 synthesis. (A) Wnt5a elicits a robust increase in calcium
transients in hippocampal neurons. Rat hippocampal neuron cultures were transfected with GCaMP3 and treated with control L- or Wnt5a-conditioned media for
30 min. (Scale bar, 20 um.) (B) Representative traces of calcium transients. (C) Wnt5a elicits a fivefold increase in calcium transients compared with control media.
Results are mean + SEM from n = 3 independent experiments (total of n = 31 L media-treated cells and n = 26 Wnt5a-treated neurons); ***P < 0.001, two-tailed t
test. (D and E) Phosphorylated CaMKlla/$ and phosphorylation of GluA1%¢®3" are significantly reduced in CaMKII-Wnt5a™" (KO) hippocampus compared with
Wnt5a™ litter-mates (WT) at 3 mo. Immunoblots were stripped and reprobed for total CaMKllw, -p, and GluA1 for normalization. Results are mean + SEM from
n =6 mice per genotype; *P < 0.05, ***P < 0.001, two-tailed t test. (F and G) CaMKIV and CREB phosphorylation are attenuated in hippocampal nuclear fractions
from 3-mo-old KO mice. Blots were reprobed for total CaMKIV and CREB. Results are mean + SEM from n = 6 and n = 5 mice per genotype; ***P < 0.001, two-
tailed t test. (H and /) GIuN1, the obligatory NMDA receptor subunit, is significantly decreased in 3-mo KO hippocampus, but levels of other NMDA receptor
subunits, GluN2a/2b, and AMPA-type glutamate receptor subunits, GluA1 and GIuA2, are unaltered. Immunoblots were stripped and reprobed for tubulin. Results
are mean + SEM from n = 6 mice per genotype; ***P < 0.001, two-tailed t test. () gPCR analysis shows decrease in GIuNT but not GluN2a/b transcripts in the KO
hippocampus. Results are mean + SEM from n = 6 mice per genotype; **P < 0.01, two-tailed t test. (K) A 1-kb region upstream of the mouse G/uNT promoter
harbors three putative CRE sites. Hippocampal neurons were cotransfected with luciferase reporter constructs, Cypridina luciferase driven by the GIuNT promoter
region, and Gaussia luciferase driven by an SV40 promoter as a control. Neurons were treated with control or Wnt5a media for 6 h and then harvested to measure
luciferase activity. (L) Wnt5a treatment significantly increases GIuNT promoter-driven luciferase activity. Deletion of all three CRE sites or just the two proximal
binding sites (CRET and CRE2) alone abolishes the Wnt5a-mediated response. Results are mean + SEM for n = 6 independent experiments; *P < 0.05, **P < 0.01,
***%P < 0.001, two-tailed t test. (M and N) Rac1-GTP levels are reduced in 3-mo KO mice. Hippocampal homogenates were subjected to GST-PAK-PBD-agarose pull-
downs for active Rac-GTP and immunoblotted for Rac1. Rac1-GTP signal intensities were normalized to total Rac1. Results are mean + SEM from n = 6 mice per
genotype; **P < 0.01, two-tailed t test. (O and P) Phospho-JNK levels are significantly decreased in hippocampal homogenates from 3-mo KO mice. Results are
means + SEM from n = 6 mice per genotype; *P < 0.05, **P < 0.01, two-tailed t test.
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after viral infection (Fig. 54). Immunoblotting of hippocampal
homogenates revealed that AAV-mediated Wnt5a expression
was sufficient to correct the impairments in CaMKII and CREB
phosphorylation, GluN1 expression, and Racl activity in CaMKII-
Wat5d™" mice (Fig. 5 B-E). These results suggest a direct and acute
role for Wnt5a in regulating calcium and Racl activity and en-
hancing CREB-mediated synthesis of NMDA-type glutamate
receptor subunits in the mature hippocampus.

We next addressed whether the dendrite atrophy in adult
CaMKII-Wnt5¢"" neurons was permanent or could be reversed

by Wnt5a administration well after the onset of structural ab-
normalities. Thus, we delivered AAV-DIO-Wnt5a into Thyl-
GFP;CaMKII-Wnt5¢"" mice at 6 mo when CaMKII-Wnt5a""
mice exhibit pronounced regression of dendritic arbors, and mice
were harvested 3 mo after AAV infections for morphological
analyses (Fig. 5F). We simultaneously delivered AAV-DIO-
mCherry as a means to label infected neurons that are also GFP*
to facilitate tracing of neuronal morphologies in isolated neu-
rons. Strikingly, AAV-mediated expression of Wnt5a in Thyl-
GFP;CaMKII-Wnt5¢™" resulted in dendritic arbors that were
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Fig. 5. Reversal of dendritic attrition by late induction of Wnt5a expression. (4) Schematic of the strategy to assess effects of Wnt5a expression on synaptic
signaling in CaMKII-Wnt5a™" mice. Cre-dependent AAV expressing Wnt5a (AAV-DIO-Wnt5a) was injected into CaMKII-Wnt5a™" mice at 3 mo and bio-
chemical analyses performed 2 wk later. AAV-DIO-Wnt5a infected mutant mice (Rescue) were compared with CaMKiI-Wnt5a™" mice (KO) or control Wnt5a™#
mice (WT) infected with AAV-GFP. (B-E) Wnt5a expression fully restored CaMKIl and CREB phosphorylation, GIuN1 expression, and Rac1 activity in CaMKII-
Wnt5a™" hippocampi. Results are mean + SEM from n = 6 mice per group; *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA followed by Tukey’s post hoc
test. (F) Schematic of the strategy to assess effects of Wnt5a expression on neuronal morphology in adult Thy1-GFP;CaMKII-Wnt5a™" mice. AAV-DIO-Wnt5a
was delivered into Thy1-GFP,CaMKIl-Wnt5a™" hippocampus at 6 mo when there is marked dendritic regression, and morphological analyses were performed
at 9 mo. Infected neurons were identified by coinfection of AAV-DIO-mCherry. GFP fluorescence was used for imaging. (G) CA1 dendritic arbors in Wnt5a-
infected Thy1-GFP;CaMKII-Wnt5a™" mice (Rescue) were comparable to control Thy1-GFP;Wnt5a™" mice (WT). However, Thy1-GFP;CaMKII-Wnt5a™" neurons
(KO) infected with AAV-DIO-mCherry had stunted dendritic arbors, as expected. (Scale bar, 100 um.) (H) Sholl analysis shows that AAV-mediated Wnt5a
expression for 3 mo corrects dendrite complexity defects in 9-mo-old Thy1-GFP,'CaMKII—WntSaf”” mice. (/ and J) Dendritic lengths and dendritic branch points
are comparable between WT and Rescue neurons, but significantly decreased in KO neurons in 9-mo-old mice. Results are mean + SEM from n = 5 neurons
traced per animal and a total of five mice per group; *P < 0.05, ***P < 0.001, one-way ANOVA followed by Tukey’s post hoc test.
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comparable in complexity and lengths to control Thyl-GFP;
Wat5a™" neurons (Fig. 5 G-J). As expected, with infection with
AAV-DIO-mCherry alone, we observed substantial decreases in
dendrite complexity and lengths in Thyl-GFP;CaMKII-Wnt5a""
CA1 neurons (Fig. 5 G=J). These findings indicate that dendritic
attrition in adult mutant neurons can be reversed, and reveals
that Wnt5a, remarkably, promotes substantial dendritic growth
and branching in the adult brain when neuronal connectivity is
thought to be largely immutable.

Discussion

Wnats are evolutionarily conserved signaling molecules that have
been classically associated with embryonic patterning and es-
tablishment of neural circuits (47, 64, 65). That these classic
developmental cues may have critical functions in the adult brain
has been implied by recent findings that broad-spectrum block-
ade or activation of Wnt pathway components affects synaptic
structure, plasticity, and cognitive functions in adult animals (37—
41). However, surprisingly little is known about which of the 19
vertebrate Wnts is essential for adult nervous system functions in
vivo. Furthermore, manipulation of the Wnt pathway through
overexpression of antagonists, such as Dickkopf-1 (38, 41), de-
letion of the Lrp6 coreceptor (40), or the cytoplasmic effector,
pB-catenin (37), may have consequences on neuronal connectivity
and function that are independent of Wnt ligands, via effects on
cell-cell adhesion, JNK signaling, and GPCR-mediated cAMP
signaling (66-68). Here, we show that deletion of a single Wnt
family member, Wnt5a, is sufficient to elicit profound disrup-
tions in synaptic plasticity, structural maintenance, and learning
and memory in adult mice, identifying the importance of this
particular noncanonical Wnt in later-life functions. Thus, the loss
of Wnt5a cannot be compensated for by other Wnts in the adult
hippocampus. Together, our results, summarized in the model in
Fig. 6, define a causal sequence of events where WntSa first
influences synaptic plasticity and related cognitive functions in
the adult hippocampus through CaMKII-mediated signaling,
Racl-dependent actin dynamics, and CREB-mediated NMDA
receptor biosynthesis. In the long-term, Wnt5a-mediated regu-
lation of cytoskeletal signaling and excitatory synaptic trans-
mission is responsible for the maintenance of dendritic arbors
and spines. These findings provide insight into the poorly un-
derstood structural maintenance mechanisms that exist in the
adult brain, and suggest Wnt5a signaling as a molecular target in
ameliorating dendrite shrinkage and cognitive decline associated
with pathological situations.

The finding that embryonic deletion of Wnt5a in neurons did
not elicit any structural abnormalities in CA1 pyramidal neurons
during development suggests that neuronal Wnt5a is dispensable
for the establishment or maturation of hippocampal connectivity
in vivo. These results were surprising in the context of reported
developmental functions for Wnt5a in cultured hippocampal
neurons, and in embryonic processes in other brain regions (15,
18, 19). In hippocampal neurons, several signaling pathways have
been shown to influence dendrite morphogenesis, maturation,
and stability in vitro and in vivo (1, 6, 69). Thus, in the absence of
Wnt5a, other signaling mechanisms, including other Wnt mole-
cules (26, 27), could provide trophic support to hippocampal
CAl dendrite arbors and spines at least for the first several
months of life in mice. Alternatively, Wnt5a derived from non-
neuronal sources may support hippocampal formation in the
absence of neuron-derived Wnt5a. However, the profound de-
fects in adult mice lacking Wnt5a suggest that these mechanisms
are unable to compensate for Wnt5a loss at later stages of life.
Notably, we demonstrate that Wnt5a, derived from CAl pyra-
midal neurons themselves, is critical for sustaining dendritic ar-
chitecture in the adult hippocampus, implying that specificity for
neuronal wiring is intrinsic to active neurons themselves in hip-
pocampal circuits. To date, our limited understanding of the
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Fig. 6. Model for adult-specific roles for autocrine Wnt5a signaling in
maintenance of CA1 dendrite architecture and function. Wnt5a influences
synaptic plasticity and related cognitive functions in the adult hippocampus
through CaMKII-mediated signaling and NMDA receptor biosynthesis, and
also Rac1-dependent actin dynamics in dendritic spines. In the long-term,
Wnt5a-mediated regulation of cytoskeletal signaling and excitatory synaptic
transmission is responsible for maintenance of dendritic structure.

molecular cues that influence neuronal morphology in adult
animals has largely come from analyses of cortical neurons in
genetically modified mice. Among the examples are adult mice
with deletion of BDNF and its receptor TrkB (7, 8), the adhesion
molecule 3-catenin (70), and the tumor suppressor phosphatase
and tensin homolog deleted on chromosome 10 (PTEN) (71).
Our findings identifying Wnt5a as being essential for the main-
tenance of adult CA1 hippocampal neurons is relevant to un-
derstanding the structural bases of hippocampus-dependent
behaviors.

We found that synaptic plasticity is most susceptible to the
postnatal depletion of Wnt5a. CaMKII-Wnt5a™" mice had im-
paired CA1 LTP and related behavioral defects at 3 mo of age, a
time when basal synaptic transmission and dendritic morphology
are intact. The normal presynaptic properties indicate that
Wnt5a acts primarily at postsynaptic sites. Recombinant Wnt5a
has previously been shown to acutely modulate NMDAR-me-
diated synaptic transmission in rat hippocampal slices (72). Our
results suggest that WntSa likely modifies synaptic strength
through CaMKII-mediated signaling events, including the phos-
phorylation and subsequent trafficking/conductance of AMPA-
type glutamate receptors, Racl-dependent regulation of actin
dynamics in dendritic spines, and regulation of NMDA receptor
biosynthesis. Attenuation of small GTPase-mediated signaling
and excitatory synaptic transmission, both postulated to be crit-
ical determinants in stabilizing neuronal connectivity (61, 73, 74),
may underlie the gradual attrition of dendritic arbors and spines
in later life. Because mice with forebrain-specific deletion of
GIuN1 have impairments in plasticity at CAl synapses and
spatial memory acquisition (75), these findings suggest that
down-regulation of NMDA receptor synthesis contributes, in
part, to the functional and behavioral defects that we observed in
CaMKII-Wnt5¢™" mice. Although NMDA receptor-mediated
LTD is impaired in mice with CaMKII-Cre-mediated deletion of
GluN1 g75), that we observed normal LTD responses in CaMKII-
Wnt5¢"" mice can be attributed to the fact that residual
GluN1 expression in Wnt5a mutant mice may still allow suffi-
cient Ca** influx to promote LTD, consistent with the view of
differential Ca** requirements for LTD versus LTP (76, 77).
Previously, targeted GIluN1 deletion has also been reported to
result in modest (~35%) decreases in GluN2a/2b protein ex-
pression, but unaltered levels of GluN2a/2b mRNA (78, 79). The
decrease in GluN2a/2b subunits was attributed to their aberrant
retention in the ER and protein degradation when GluN1 is
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unavailable (78). That we did not observe any changes in
GluN2a/2b protein levels in CaMKII-Wnt5a™" mice is likely be-
cause the GIuN1 depletion in our study (34%) is less robust
compared with the near-complete depletion previously reported
in GIluN1 conditional null mice (78, 79). Thus, residual GluN1
expression in CaMKII-Wnt5a"" mice might be sufficient to avoid
ER-associated degradation of the GluN2a/2b subunits. Although
the total GIluN2a/2b protein content was unaltered in the
CaMKII-Wnt5¢"" hippocampus, it is possible that their synaptic
localization might be affected by Wnt5a loss, given previous
findings that Wnt5a modulates the surface expression of GluN2b
in cultured hippocampal neurons (80).

Currently, the Wnt5a receptors that mediate effects on den-
dritic maintenance and synaptic functions in the adult hippo-
campus remain to be determined, although likely candidates
include the Rorl/2 receptor tyrosine kinases and Frizzled-9.
Ror1/2 have been demonstrated to be bona fide Wnt5a receptors
in vivo (81). Ror2 is abundantly expressed in mature CA1 dendrites,
promotes dendritic activation of noncanonical Wnt signaling and,
notably, is necessary for Wnt5a-mediated potentiation of NMDAR
currents in acute hippocampal slices (82). Ror2 may function in
coordination with Frizzled receptors; in particular, Frizzled-9 is
localized to postsynaptic sites in hippocampal neurons, binds
Wnt5a via its cysteine-rich domain in biochemical analyses, and
the Frizzled-9 cysteine-rich domain is required for Wnt5a-mediated
changes in spine densities in cultured hippocampal neurons (32).

The early LTP defects and the cognitive decline followed by
retraction of dendrites and spine loss observed in adult WntSa
mutant mice bear similarities to the progression of events in
animal models of Alzheimer’s disease (83). Recent genetic
evidence implicates deficiencies in Wnt signaling, largely the
canonical arm, in the synaptic dysfunction and cognitive impair-
ments in Alzheimer’s disease (40, 84, 85). Our study emphasizes
that noncanonical Wnt signaling is essential for maintaining
synaptic function and connectivity in the adult brain. That late
induction of Wnt5a expression even after the onset of substantial
neuronal atrophy, remarkably restores dendrite morphology in
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