








AMOC weakening could also reduce the number of TC tracks
reaching NYC (45).

Beyond the limitations of GCMs, it should also be noted that, like many
previous studies (3, 4, 17), we do not consider the extratropical transition
of storms as they move to higher latitudes. The extratropical transition of
TCs that impact the northeastern United States is not uncommon (46)
and can result in storms such as Hurricane Sandy (2012), which generated
devastating surges in NYC as a posttropical cyclone. Sediment records of
coastal flooding near NYC support the idea that the frequency of major
flood events may be underestimated in GCM studies (17).

Regardless of TC characteristics, SLR will greatly increase future
flood risk for NYC, where SLR is projected to be more rapid than
the global mean (21, 36). Sea levels are expected to continue rising
for at least the next several centuries, more than offsetting any po-
tential decreases in storm-surge heights (15, 17, 21–23).

Methods
Study Area.We focus our study at the Battery in NYC. Storm-surge heights and
flood heights are given relative to MTL, or the arithmetic mean of mean low
water andmeanhighwater at the Battery tide gauge over the presentNational
Tidal Datum Epoch (1983–2001). The Battery tide gauge from the National
Oceanic and Atmospheric Administration (NOAA) tide gauge network indi-
cates that (i) the present great diurnal range (GT, the height difference be-
tween mean higher high water and mean lower low water) is 1.54 m, (ii) the
present mean tidal range is 1.38 m, and (iii) the height difference between
spring and neap tides is typically ∼0.5 m.

Synthetic TC Datasets. The downscaling method described in refs. 47 and 48 is
applied here to the core models for the CMIP5 RCP8.5 experiments. In this
downscaling method, TC tracks are approximated with a beta-and-advection
model, which uses synthetic wind time series at 850 and 250 hPa to de-
termine storm motion (48). Methods applied to simulations of future TCs are
the same as those described in the historical analysis presented in ref. 4,
including the deterministic calculation of RMW values using the Coupled
Hurricane Intensity Prediction System, or CHIPS, model (48). Our analysis
applies the basin mean value of storms’ outer radius to all storms, which may
induce a low bias in the estimated storm-surge distributions (refs. 17 and 49–
51; see Supporting Information for further explanation).

Preindustrial-era TC and storm-surge datasets referred to here are the
same as the preanthropogenic datasets described in ref. 4, and the modern-
era surge and TC datasets referred to here are the same as the anthropo-
genic datasets used in ref. 4. Note that preindustrial and modern datasets
contain ∼5,000 storms for each model. For reliable statistical analysis of fu-
ture storm-surge heights in this region we use datasets that include more
than 12,000 storms per century with centers that pass within 250 km of the
Battery. Overall event frequency is calculated from the ratio of the total
number of simulated TC events to the total number seeded.

Storm-Surge Modeling. As in ref. 4, we apply the Advanced Circulation (ADCIRC)
model (52) to simulate the storm surges induced by all synthetic storms. ADCIRC
is a finite-element hydrodynamic model that has been successfully used to
simulate and forecast storm-surge events for coastal regions (e.g., refs. 53 and
54). The numerical grid and modeling specifics used here were developed by
Lin et al. (3) and used in refs. 4 and 17.

Consistent with previous work, storm surge is defined here as the anomalous
rise of water above MTL, and flood height is defined as the sum of storm surge
and change in relative sea level (4, 17). Storm-surge height is primarily de-
termined by a TC’s wind patterns and track, coastal geography, and, to some
extent, the reduced atmospheric pressure associated with a storm. Storm-surge
heights are thus highly dependent upon the TCs that generate them, as they
are significantly affected by TC characteristics, including intensity, size, dura-
tion, and location (3, 4, 13). The effect of changes in wave setup for the region
is expected to be small and is not included in our storm-surge calculations.

Additionally, although there has been some work indicating that interactions
between storm surgeand tide arenot strictly linear (3), floodheights are calculated
here relative to MTL, and a full tidal cycle is not accounted for in our discussion
of changing flood heights from the preindustrial era to the future. It is possible
that tides may evolve in a changing climate (55). Although recent work suggests
that changing bathymetric depth has little influence at the Battery, evidence does
support a strong, approximately linear relationship between GT and the bathy-
metric depth of Long Island Sound (56). Further, tides can be very important in
determining overall flooding, influencing the highest water levels reached during
a storm-surge event (2, 56). The influence of tides upon overall flood heights varies

greatly from storm to storm (Supporting Information) but is likely to be most
significant with large or slow-moving TCs, such as Hurricane Sandy. Tidal contri-
butions to overall flood heights are well-documented for major historical TCs
impacting NYC, including the 1938 New EnglandHurricane (40% tidal contribution
to the overall 1.57-m storm tide), Hurricane Donna (1960; 29% tidal contribution to
the overall 2.30-m storm tide), Hurricane Gloria (1985; 12% tidal decrease of the
1.9-m surge to a 1.7-m storm tide), and Hurricane Sandy (19% tidal contribution to
the overall 3.47-m storm tide; ref. 2). Thus, our decision to make our calculations
using the MTL tidal datum constitutes an important caveat for this work.

We use a linear combination of storm surge and sea level (from proxy
records and SLR projections) to generate flood heights at the Battery. To view
the results presented here in the context of the historical analysis presented in
ref. 4, future sea level from SLR projections for each year was adjusted to be
relative to a preindustrial-era baseline (4, 57).

Ref. 3 shows that, especially for SLR amounts of about 1.8 m or less, the
nonlinear effect of SLR on storm-surge heights at the Battery is very small;
ref. 35 also demonstrates similar flood levels at the Battery for both static
and dynamically modeled floods of up to about 5.8 m. However, while such
a linear combination of surge and SLR may provide a close approximation, it
may also result in a slight underestimation of final flood heights (58, 59),
which could cause some of the flood heights presented here to be somewhat
lower than what we would expect if SLR were fully integrated into ADCIRC.

Future SLR Projections. For the future mean sea levels upon which simulated
storm-surge events occur, we use 10,000 Monte Carlo (MC) samples of projected
sea level at the Battery for both the RCP4.5 and RCP8.5 scenarios, based upon the
framework of ref. 21. SLR projections are developed based on the CMIP5 archive
for thermal expansion and ocean dynamics, surface-mass balance modeling for
glacier melt, a combination of the AR5 expert assessment and the expert elici-
tation of ref. 60 for ice-sheet contributions, semiempirical modeling of land water
storage, statistical modeling of nonclimatic local sea-level change, and geo-
physical modeling of gravitational, elastic, and rotational effects on local sea level
(21). We also generated a set of projections in which we replaced the west and
east AIS projections of ref. 21 with random samples from the 5- to 20-m Pliocene,
non-bias-adjusted RCP4.5 and RCP8.5 ensembles of ref. 26. It should be noted that
ref. 26 was not attempting to construct a probability distribution of future AIS
changes; its ensemble of 29 members can be viewed neither as spanning the full
range of possibilities with minimal gaps nor as having a defined probability as-
sociated with each member. Thus, the distribution of this second set of projec-
tions may be viewed as a frequency distribution from a modeled set of possible
futures, but not as a probability distribution of future SLR (27).

The projections used here differ from those of refs. 21 and 26 in two
important ways. First, the projections are extended to 2300, while those of
ref. 21 ended in 2200. For the ocean dynamic and thermal expansion com-
ponents we achieve this extension by continuing to use GCM projections
that extend to 2300. For glacier projections we do the same using surface-
mass balance projections driven by GCM projections extending to 2300. For
the Greenland ice sheet and for AIS in the ensemble consistent with AR5 we
continue the linear growth of ice-sheet melt rates beyond 2200. Second, for
the ensemble employing the AIS projections (26), we employ the full time
series of projections; only 2100 and 2500 values are reported in ref. 26.

Preindustrial andmodern relative sea level datasets used in this study to calculate
flood heights during these time periods are the same as those described in ref. 4,
developed from relative sea-level reconstructions in southern New Jersey (57).

Statistics. Distributions of TC characteristics used to calculate return periods and
LAFs (Fig. S1) are produced by generating 25,000 bootstrap samples of
∼5,000 events for both the modern and future time periods (61). Similarly, dis-
tributions of storm surges used to calculate mean and 95% credible intervals of
storm-surge return periods (Fig. 1) are produced by generating 100,000 boot-
strap samples of ∼5,000 storm-surge events for both themodern and future time
periods. Additionally, distributions of flood heights used to calculate return pe-
riods over short time periods (2080–2100 and 2280–2300; Fig. 6) are produced by
generating 100,000 bootstrap samples of 2,835 storm-surge events from the time
period of interest in the original storm-surge dataset and combining each
bootstrap sample with a randomly selected SLR time series from theMC samples.

We use PCA to analyze variations and patterns between TC characteristics and
storm surge. In addition, we examine LAFs to compare modern and future return
periods.We define the LAF of a variable as the ratio of the variable’s future value
to its modern value for a given return period; it indicates the degree to which
the variable increases or decreases in the future compared with the modern era.

Data Availability. Data used here are publicly available from the Earth System
Grid Federation website (https://www.earthsystemgrid.org/home.html). SLR
projections were generated using ProjectSL (https://github.com/bobkopp/
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ProjectSL) and LocalizeSL (https://github.com/bobkopp/LocalizeSL). Researchers
interested in downscaled fields may contact coauthors K.A.E. or A.J.G. via
email with their request.
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