














structures: first, a rootletin ring that surrounds the centriole; and
second, filaments as described earlier that originate from the
rootletin ring (Fig. 8B). The precise structure of the rootletin ring
surrounding centrioles is still unclear. It could be composed of short
rootletin filaments, or rootletin molecules may have a radial ori-
entation around centrioles similar to what has been observed for
PCNT, of which the C terminus is close to centrioles and the N
terminus more distant (3). CEP68 depletion mainly affected the
outward-radiating rootletin filaments but also affected, to a
lower degree, the rootletin pool close to C-Nap1, indicating dif-
ferent CEP68 requirements. Rootletin directly binds to C-Nap1
(20), explaining why the structural integrity of the C-Nap1 pool
of rootletin was less dependent on CEP68. Rootletin/CEP68 dots
on the centriole ring likely function as nucleation seeds or an-
choring points for the assembly of filaments. However, similar to
tubulin and G-actin that use nucleators in cells but can also shelf-
assemble into polymers when the concentration is high enough
(31, 32), rootletin assembles into cytoplasmic filaments without
the aid of C-Nap1 and CEP68 when overexpressed (this study and
refs. 8 and 9).
How do rootletin/CEP68 filaments connect the two interphase

centrosomes of a cell? The STED microscopy and 3D-STORM
data suggest that rootletin/CEP68 filaments coming from different
centrosomes are interwoven into a web-like structure (Fig. 8B).
Moreover, live-cell imaging analysis has shown that the centro-
some linker is a flexible structure that can lose and regain linker
function without the disassembly of centrosome linker filaments
(Movies S4–S6). In addition, centrosome linkage can be overcome
by microtubule motor forces provided by the kinesin-5 motor Eg5
(33). These data together are most consistent with a model of
flexible interweaved rootletin/CEP68 filaments that form regional
contacts. However, presently, we cannot exclude the possibility
that a single centrosome-to-centrosome fiber can also provide

linkage function. The extended web-like centrosome linker po-
tentially has the properties of forming a landing platform for
signaling molecules. In addition, it may function as contact sites
for cytoskeletal elements with yet unappreciated functions.

Materials and Methods
For all STED data, except Fig. 3 A and B; Fig. 4A, Middle and Bottom; Fig. 5B,
siCEP68; SI Appendix, Figs. S3 and S4 A–C; and the corresponding SI
Appendix, Fig. S11 (here we used an Abberior Instruments 775 STED), we
used a home-built STED microscope similar to the one published in ref. 23
with a 594- and 650-nm excitation laser combined with a 775-nm STED laser
(SI Appendix, Fig. S12). The STED images were, unless specified differently,
corrected for background (ImageJ background subtraction with a rolling ball
radius of 30 to 50 pixels), followed by resampling to half the pixel size
(10 nm) and Wiener deconvolution with point-spread functions of 27 to
40 nm and 190 to 250 nm. Due to the large spread in intensities, to show all
features, linear background subtraction and intensity scaling was applied.
All raw data are shown in SI Appendix, Fig. S11, and an overview of the
measured cell is given in SI Appendix, Table S1.

Details are in SI Appendix, Details of Materials and Methods, including
experimental procedures and reagents.

No animal or clinical experiments were performed. HUVECs were obtained
from A. Fischer, German Cancer Research Center, Heidelberg, with the ap-
proval of the Medical Ethics Commission of the Medical Faculty Mannheim,
Heidelberg University (S-175/2015).
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