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The accurate teleoperation of robotic devices requires simple, yet
intuitive and reliable control interfaces. However, current human–
machine interfaces (HMIs) often fail to fulfill these characteristics,
leading to systems requiring an intensive practice to reach a suf-
ficient operation expertise. Here, we present a systematic meth-
odology to identify the spontaneous gesture-based interaction
strategies of naive individuals with a distant device, and to exploit
this information to develop a data-driven body–machine interface
(BoMI) to efficiently control this device. We applied this approach
to the specific case of drone steering and derived a simple control
method relying on upper-body motion. The identified BoMI
allowed participants with no prior experience to rapidly master
the control of both simulated and real drones, outperforming joy-
stick users, and comparing with the control ability reached by
participants using the bird-like flight simulator Birdly.
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Teleoperation, a subfield of human–machine interaction
(HMI), describes the control at a distance of an actuated

device (1). Typical applications include deployments in envi-
ronments where it is not desirable or possible to send a human
operator, such as nuclear plants (2, 3), scenes of natural hazards,
or more generally in search and rescue missions (4–6). The use of
teleoperated systems can augment human dexterity and preci-
sion, which are fundamental abilities in those and other fields
of application, such as minimally invasive surgery (7) or micro-
fabrication (8). Patients suffering from neurological disorders may
benefit as well from teleoperated systems to substitute for lost
body functions by controlling wheelchairs (9, 10), telepresence
systems (11, 12), or robotic manipulators (13).
Successful teleoperation requires robust and reliable control

interfaces. A well-defined interaction should be transparent (14,
15), rely on intuitive command inputs to ensure rapid proficiency
and minimize the task-associated workload (16), and provide
appropriate feedback (visual, auditory, haptic) to strengthen the
awareness of the operator (17). A number of existing interfaces
already allow interactions with robotic devices. However, simple
third-party devices such as a joystick show limited performance
even with systems with few degrees of freedom (DOFs). The
development of intuitive commands becomes yet more chal-
lenging in “nonhomologous” interactions, that is, when the
operators’ command behaviors significantly differ from the
machine’s realizable behavior, or when their physical abilities
are restricted.
A possible approach to address this issue comes from brain–

computer interfaces (BCIs), which bypass behavioral output by
directly retrieving the desired information from the cerebral
activity patterns, often relying on mental imagery. Successful
examples include the control of humanoids (18), unmanned
aerial vehicles (UAVs) (19–21), wheelchairs, and telepresence
systems for motion-impaired individuals (9–12). BCIs do none-
theless come with certain limitations, which may prevent their

widespread utilization. Firstly, the noninvasive signal acquisition
is associated with a low signal-to-noise ratio and thus a high
sensitivity to perturbations. The use of these systems is therefore
limited to relatively controlled environments and may not be
suited to everyday activities. Another limitation of this approach
comes from the execution of motor imagery tasks, which strongly
constrains the user’s focus on the completion of the control task.
The system is therefore prone to errors in case of unpredicted
and undesired stimuli and a long-term operation is likely to be
cognitively demanding.
Recent and promising developments suggest that body–

machine interfaces (BoMIs) are a valuable alternative to BCIs
for able-bodied or partially impaired persons. Instead of neural
activity patterns, these systems retrieve information from body
motion or from the underlying muscular activities (22). The
broad spectrum of applications ranges from the control of
assistive devices by neurological patients (23–25) to the control
of UAVs (26–29). BoMIs present one unambiguous advantage
over BCIs: they exploit the fine control the operators can have
over their body, while operating a BCI requires to actively
modulate the activity of designed cerebral areas, a task for which
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The teleoperation of nonhumanoid robots is often a de-
manding task, as most current control interfaces rely on map-
pings between the operator’s and the robot’s actions, which
are determined by the design and characteristics of the in-
terface, and may therefore be challenging to master. Here, we
describe a structured methodology to identify common pat-
terns in spontaneous interaction behaviors, to implement em-
bodied user interfaces, and to select the appropriate sensor
type and positioning. Using this method, we developed an
intuitive, gesture-based control interface for real and simulated
drones, which outperformed a standard joystick in terms of
learning time and steering abilities. Implementing this pro-
cedure to identify body-machine patterns for specific applica-
tions could support the development of more intuitive and
effective interfaces.

Author contributions: J.M., A.C., S. Mintchev, M.C., D.F., and S. Micera designed research;
J.M., A.C., and S. Mintchev performed research; J.M., A.C., M.C., and F.A. analyzed data;
A.C. developed the flight simulators, the drone, and their control interfaces; and J.M. and
S. Micera wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data that support the findings of this study can be accessed on
GitHub at https://github.com/jmlbr/body-machine_interface_drone.
1D.F. and S. Micera contributed equally to this work.
2To whom correspondence should be addressed. Email: silvestro.micera@epfl.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1718648115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1718648115 PNAS Latest Articles | 1 of 6

E
N

G
IN

E
E

R
IN

G
N

E
U

R
O

S
C

IE
N

C
E

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1718648115&domain=pdf&date_stamp=2018-07-11
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/jmlbr/body-machine_interface_drone
mailto:silvestro.micera@epfl.ch
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718648115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1718648115


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718648115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718648115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718648115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718648115/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1718648115/video-3
www.pnas.org/cgi/doi/10.1073/pnas.1718648115


root-mean-square angular velocities of the different joints and
found that 10 subjects used predominantly their torso but did not
actively involve their arms (i.e., their arms were either rested on
their thighs or extended sideward like wings; see Fig. 2A and
Movie S1), while five subjects combined torso and arm move-
ments (Fig. 2B and Movie S2). To account for these different
patterns, we further analyzed both groups separately (hereafter
“Torso” and “Torso and Arms” groups).
Muscle activity patterns confirm the presence of two movement strategies.
We assessed the activity of major upper-body muscles groups
during the imitation task and compared their contribution to the
overall data variability across subgroups using nonnegative sparse
principal component analysis (SI Appendix) (44, 45).
The Torso group displayed a sparse pattern, with six pairs of

muscles located on the superior back (sternocleidomastoid, tra-
pezius superior, latissimus dorsi) and on the upper arm (deltoid
anterior, deltoid medialis, triceps brachii; Fig. 3A and SI Ap-
pendix, Fig. S2) found to significantly contribute to the overall
variability. The Torso and Arms group in turn showed a more
uniform pattern, with 10 pairs of muscles out of 16 considered as
carrying the relevant variability. All of the contributors for the
Torso group were also selected here. The additional muscles
were located on the forearm (extensor digitorum communis) and
in the upper trunk (infraspinatus, rhomboid major, pectoralis
major; Fig. 3B and SI Appendix, Fig. S2). These results confirm
the existence of two distinct motion strategies, one involving
only the torso, the other one including both torso and arm
movements.
Kinematic variables show uniform levels of discriminant information. We
evaluated and compared the amount of discriminant information
provided by all considered upper-body segments, that is the
torso, both upper arms, and both forearms, as defined by the 3D
position of their center of mass (COM) (46), as well as the ab-
solute orientation angles for the torso and the shoulder and elbow
angles (47, 48). We used the Reliable Independent Component
Analysis (RELICA; SI Appendix) (49, 50) to parse the multivariate
dataset into independent components, and to identify the variables
carrying the relevant information.
The averaged segment scores for the Torso group show that

the information is uniformly distributed across all variables. In
particular, we found no significant difference between the
amount of information held by the torso COM and torso angles
(ITorsoCOM = 9.25 ± 1.00, ITorsoAngles = 10.16 ± 0.65, P = 0.098),
which indicates that the positional and angular variables are of
equal interest for decoding the movements of this strategy (Fig.
4A). Similarly, the level of information was nearly uniformly
distributed across the individual segments for the Torso and
Arms group. We also assessed the difference between the
cumulated informativeness carried by all COMs and all joint
angles. Once more, we found that the two subsets of variables

held equivalent levels of information (IallCOMs = 51.93 ± 1.33,
IallAngles = 48.07 ± 1.98, P = 0.062, Fig. 4B).
The discriminant information thus appeared to be equally

distributed across all kinematic variables. In view of future ap-
plications, we decided to restrict the subsequent steps of our
analysis to the angular data, which can be more robustly
extracted with wearable sensors (51).
Selected kinematic variables lead to higher decoding performances than
selected muscles.Next, we assessed the decoding power held by the
full sets of kinematic variables and the muscular activities, and by
the reduced (selected) sets of both types of signals as identified
in the previous section. For each subject, we implemented linear
discriminant analysis (LDA) classifiers employing one set of variables
with leave-one-out cross-validation. Eventually, we performed a
generalized classification, using the data of all-but-one subjects to
build the classifier, which was then tested on the data of the
remaining subjects (Fig. 5 and SI Appendix).
The EMG-based classification for the Torso group yielded

low accuracies, with similar results for the entire dataset
(ATorso_allEMG = 37.65 ± 26.42%), and the selected variables
(ATorso_selectedEMG = 34.87 ± 27.29%, P = 0.6). In particular,
the “Forward” and “Up” commands were poorly recognized,
with scores in the range of chance level. In contrast, the data
of the Torso and Arms group led to satisfying performances,
again with similar results for the entire dataset (ATorsoArms_allEMG =
76.11 ± 6.23%), and the selected variables (ATorsoArms_selectedEMG =
72.15 ± 10.70%, P = 0.77); with all movements equivalently
well decoded.
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Fig. 2. Representative traces of the muscle activities (Top: rhomboid major, Middle: deltoid anterior, Bottom: triceps brachii lateral head) and shoulder
abduction angles during the execution of the open-loop task. (A) Participant using only the torso. (B) Participant actively using both the torso and the upper
limbs. (C) Participant categorized as outlier. (D) Participant clustering according to the selected movement strategies.
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Fig. 3. Cumulated factor loadings showing the contribution of each muscle
to the overall variance in the EMG dataset. (A) Participants using only their
torso. (B) Participants using their torso and their arms. The retained muscles
(indicated by the black stars) are STRCM, TRAP, LAT, DANT, DMED, and TRI
for the Torso group; STRCM, TRAP, INFRA, LAT, RHO, PEC, DANT, DMED, TRI,
and EXDC for the Torso and Arms group. The bar graphs represent the
means + SEM over four (Torso group), respectively, five subjects (Torso and
Arms group).
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specific case of flight and derived a simple BoMI interface for drone
control. We found that, despite the noninnate nature of flying, two
common motives emerged during the spontaneous selection of con-
gruent movements during a virtual imitation task. These two major
patterns proved to be valid command inputs for the control of a
virtual drone, with the simpler strategy involving only movements of
the torso leading to higher performances than the strategy employing
both the torso and the arms. Eventually, we demonstrated that a real
quadcopter could be controlled with the first, simpler strategy.
When using only their torso to steer the trajectory of the

simulated drone in the virtual environment, inexperienced par-
ticipants needed less than 7 min of practice to reach a perfor-
mance of 84.58% (Fig. 6A). By comparison, users performing the
same task with a joystick typically used for piloting drones only
reached an average score of 59.42% (Fig. 6A). Furthermore, the
performance level obtained using the identified BoMI is com-
parable to the performance of subjects using the bird-flight
simulator Birdly to steer the virtual drone (52) (Fig. 5). How-
ever, the participants using this platform displayed higher initial
performance and a steeper improvement. But the Birdly plat-
form provides haptic and vestibular feedbacks in addition to the
visual information used in this study, factors known to improve
the execution of teleoperated tasks (51). The lying position im-
posed by Birdly may also have affected the rapid proficiency,
since this platform allows the entire body to move as a whole,
and this posture may be more closely associated with the idea of
flying. Nonetheless, the comparable final steering performance
suggests that the identification of intuitive BoMIs can compen-
sate to a certain extent the absence of additional sources of feed-
back, while requiring only minimal recording apparatus. Moreover,
the Torso control method led to 87.7% of gates crossed
without collisions during the steering of a real drone along a
complex trajectory following a 9-min training in simulation.
In a single session, the two implemented gestural strategies led

to significantly different performance levels, with the participants
using the Torso strategy outperforming those using the Torso
and Arms approach (Fig. 6A). This difference was expected,
since the Torso and Arms strategy was derived from the movement
patterns displayed by 5 out of 15 participants of Experiment 1,
being therefore less representative of the population. Additionally,

while the Torso strategy mapped three body DOFs (torso rota-
tions) to two drone DOFs, the participants using their torso and
arms had to correctly coordinate 13 DOFs to control the two
rotations of the aircraft. Such an approach may however be of
interest in the perspective of an extension of this work including
additional commands or behaviors.
All of the subjects who trained for three consecutive days

improved their performance, confirming the importance of
practice. However, the intragroup variability significantly dif-
fered across the control methods after the third training session,
as the steering ability displayed by some participants using either
the joystick or the Torso and Arms strategy remained low (Fig.
6B). Instead, all of the subjects using the Torso strategy displayed
a final performance above 77% and the overall performance
variability significantly decreased over time. Therefore, the
Torso strategy was the only approach which all participants
managed to master following the 3-d training, suggesting that
this method may be suited to a broader range of users.
Surveying the spontaneous interaction strategies selected by

nontrained users is a concept that has already been applied for
the development of intuitive controllers for UAVs, either by
means of interviews (43) or through Wizard-of-Oz experimen-
tations (37, 39). However, these systems focus on the identifi-
cation of discrete commands and have the user interact with the
drone from an external perspective. Conversely, our work presents
a case of a data-driven, gesture-based interface for the continuous
and immersive control of drones using an immersive visual feed-
back. Our present approach could easily be translated into a
wearable implementation using an inertial measurement unit to
acquire the three-dimensional torso angles. This would provide a
substantial benefit over HMIs using video-based motion tracking,
which imposes constraints on lighting conditions in the operating
environment and on the users’ freedom of displacement, and thus
limit the applicability of such a controller in natural environments.
A possible limitation of this study could be found in the mapping

(scaling and offset constants) used to translate upper-body move-
ments into commands of the simulated and real drones. The chosen
mapping has shown to be sufficiently sensitive to steer the drone
along the relatively smooth waypoint paths used in the experiments
described here. However, we cannot exclude that sinuous trajecto-
ries involving sharp changes of directions may require different or
even adaptive mapping values. Indeed, it is known that humans
make directional errors when relying only on proprioception to
estimate the spatial location of their limbs, and that these errors
are proportional to the distance to the body centerline (53, 54).
Building on this knowledge, previous studies showed that nonlinear
transformations of the users’ arm movements led to faster and more
precise control of a robotic arm than a simple scaling (14, 55).
Further studies will be needed to understand the role of more
complex mappings to extend the results of this work.
Another limitation comes from the small diversity of our study

population, which consisted mainly of young, male university
students. It is unknown to which extent experience and obser-
vation shape the human representation of noninnate behaviors
such as flight. We can therefore not exclude that factors such as
age, gender, physical condition, or familiarity with technology
could lead to the identification of different body motion pat-
terns. However, such discrepancies may highlight interest-
ing causes in motor learning and representation rather than
invalidating the proposed identification method.

Conclusion
The results of this study have a significant importance for the
field of teleoperation and more generally HMIs. Often, control
strategies are predefined and selected to comply with existing
interfaces rather than derived from spontaneous representations
of the interaction. The implementation of a methodology to
identify body–machine patterns for specific applications could
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Fig. 6. Control of the simulated drone. (A) Performance evolution during
the training phase and final evaluation after one session. The dotted lines
represent the performance averaged across participants, the full lines the
modeled learning curves, and the diamonds indicate the mean performance
(*P < 0.05, **P < 0.01). (B) Final evaluation on three training sessions on
consecutive days. The diamonds indicate the mean performance.
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