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We develop a method for the evaluation of extreme event statis-
tics associated with nonlinear dynamical systems from a small
number of samples. From an initial dataset of design points, we
formulate a sequential strategy that provides the “next-best”
data point (set of parameters) that when evaluated results in
improved estimates of the probability density function (pdf) for
a scalar quantity of interest. The approach uses Gaussian process
regression to perform Bayesian inference on the parameter-to-
observation map describing the quantity of interest. We then
approximate the desired pdf along with uncertainty bounds using
the posterior distribution of the inferred map. The next-best
design point is sequentially determined through an optimiza-
tion procedure that selects the point in parameter space that
maximally reduces uncertainty between the estimated bounds
of the pdf prediction. Since the optimization process uses only
information from the inferred map, it has minimal computational
cost. Moreover, the special form of the metric emphasizes the
tails of the pdf. The method is practical for systems where the
dimensionality of the parameter space is of moderate size and
for problems where each sample is very expensive to obtain.
We apply the method to estimate the extreme event statistics
for a very high-dimensional system with millions of degrees of
freedom: an offshore platform subjected to 3D irregular waves.
It is demonstrated that the developed approach can accurately
determine the extreme event statistics using a limited number
of samples.

extreme events | adaptive sampling | sequential experimental design

For many natural and engineering systems, extreme events,
corresponding to large excursions, have significant conse-

quences and are important to predict. Examples include extreme
economic events, such as credit shocks (1), rogue waves in the
ocean (2), and extreme climate events (3). Extreme events “live”
in the tails of a probability distribution function (pdf); thus, it
is critical to quantify the pdf many standard deviations away
from the mean. For most real-world problems, the underlying
processes are far too complex to enable estimation of the tails
through direct simulations or repeated experiments. This is a
result of the low probabilities of extreme events, which neces-
sitate a large number of experiments or ensembles to resolve
their statistics. For random dynamical systems with inherently
nonlinear dynamics (expressed through intermittent events, non-
linear energy transfers, broad energy spectrum, and large intrin-
sic dimensionality), we are usually limited to a few ensemble
realizations.

The setup in this article involves a stochastic dynamical sys-
tem that depends on a set of random parameters with known
probability distribution. We assume that the dimensionality of
the random parameters is or can be reduced to a moderate size.
Because of the inherent stochastic and transient character of
extreme responses, it is not sufficient to consider the dynami-
cal properties of the system independently from the statistical
characteristics of solutions. A statistical approach to this problem
has important limitations, such as requiring various extrapolation
schemes due to insufficient sample numbers (see extreme value

theorems) (4). Another strategy is large deviations theory (5, 6),
a method for the probabilistic quantification of large fluctuations
in systems, which involves identifying a large deviations princi-
ple that explains the least unlikely rare event. While applied to
many problems, for complex systems, estimating the rate func-
tion can be very costly and the principle does not characterize
the full probability distribution. The resulting distributions via
such approaches cannot always capture the nontrivial shape of
the tail, dictated by physical laws in addition to statistical char-
acteristics. On the other hand, in a dynamical systems approach,
there are no sufficiently generic efficient methods to infer statisti-
cal information from dynamics. For example, the Fokker–Planck
equation (7) is challenging to solve even in moderate to low
dimensions (8). To this end, it is essential to consider blended
strategies. The utilization of combined dynamic–stochastic mod-
els for the prediction of extreme events have also been advo-
cated and used in climate science and meteorology by others
(9–11). In refs. 12 and 13, a probabilistic decomposition of
extreme events was used to efficiently characterize the probabil-
ity distribution of complex systems, which considered both the
statistical characteristics of trajectories and the mechanism trig-
gering the instabilities (extreme events). While effective, the pro-
posed decomposition of intermittent regimes requires explicit
knowledge of the dynamics triggering the extremes, which may
not be available or easily determined for arbitrary dynamical
systems.

We formulate a sequential method for capturing the statis-
tics of an observable that is, for example, a functional of the
state of a dynamical system or a physical experiment. The
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response of the observable is modeled using a machine learn-
ing method that infers the functional form of the quantity of
interest by using only a few strategically sampled numerical sim-
ulations or experiments. Combining the predictions from the
machine learning model, using the Gaussian process regres-
sion (GPR) framework, with available statistical information on
the random input parameters, we formulate an optimization
problem that provides the next-best or most informative experi-
ment that should be performed to maximally reduce uncertainty
in the pdf prediction of extreme events (tails of the distribu-
tion) according to a proposed “distance” metric. To account
for tail features, the metric uses a logarithmic transformation
of the pdfs, which is similar to the style of working on the
rate function in the large deviation principle. The optimiza-
tion process relies exclusively on the inferred properties on the
parameter-to-observation map, and no additional simulations
are required in the optimization. For the optimization problem
to be practically solvable, we require the parameter space to be
of moderate size. The proposed method allows us to sequen-
tially sample the parameter space to rapidly capture the pdf
and, in particular, the tails of the distribution of the observable
of interest.

Problem Setup and Method Overview
Consider a dynamical system with state variable u ∈Rn ,

du

dt
= g(t , u; θ(ω)), ω ∈Ω, [1]

where Ω is the sample space in an appropriate probability space
(we denote the density of the random variable X by fX and its
cumulative density by FX ). The random variable θ : Ω→U ⊂Rm

parameterizes sources of uncertainty, such as stochastic forc-
ing terms or system parameters with a priori known distribution
fθ . For fixed ω ∈Ω, the response u is a deterministic function
in time. We are interested in estimating the pdf f̂ of a scalar
quantity of interest or observable q ∈R given by

q = T̂ (θ),F(u), [2]

where T̂ :U ⊂Rm→R is a continuous parameter-to-observa-
tion map and F is an arbitrary functional of u . In addition,
it is possible to consider observations q that are corrupted by
some observational or numerical noise term, but for simplicity,
we assume zero noise. In our setup, the unknown parameter-
to-observation map T̂ is expensive to evaluate, representing, for
example, a large-scale numerical simulation or a costly physical
experiment, and so we desire to minimize the number of evalua-
tions of this mapping. Note that the true statistics of the random
variable q induced by T̂ is

f̂ (s) =
d

ds
F̂ (s) =

d

ds
P(T̂ (θ)≤ s) =

d

ds

∫
A(s)

fθ(θ) dθ, [3]

where A(s) = {θ∈U : T̂ (θ)≤ s} and F̂ is the cumulative density
function of q .

Our objective is to estimate the statistics, especially non-
Gaussian features, of the observable q—that is, the pdf of the
random variable induced by the mapping T̂ (θ), which we denote
by f̂ .

Consider the quantity of interest q with pdf f̂ induced by the
unknown mapping T̂ (θ), where θ is a random valued parame-
ter with known pdf fθ . Given a dataset Dn−1 = {(θi , T̂ (θi))}n−1

i=1

of size n − 1, so that the estimated distribution of q using a
learning algorithm from this dataset is fDn−1 , determine the next
input parameter θ such that when the map is evaluated at this

new sample the error between fDn and f̂ is minimized, placing
special emphasis on the tails of the distribution where |T̂ (θ)|
is large.

If we consider the augmented θ-parameterized dataset
Dn(θ) =Dn−1 ∪{(θ, T̂ (θ))} for all θ∈U and denote the
learned density by pdf fDn (θ), the next parameter θn is obtained
by minimizing a distance metric between two probability distri-
butions, θn = arg minθ Q(fDn (θ), f̂ ).

Determining the next-best experiment θn should not involve
the expensive-to-evaluate map T̂ nor f̂ . The main compu-
tational savings of our proposed method involves (1) using
an inexpensive-to-compute surrogate model to replace T̂ (θ)
appearing in the θ-parametrized dataset Dn(θ) and using a ver-
sion of the distance metric without explicit dependence on f̂ .
Here, we use GPR as the learning algorithm to construct the
surrogate for T̂ . Using the posterior distribution of the inferred
map through the GPR scheme, we estimate the pdf for the
quantity of interest as well as the pdfs that correspond to the
confidence intervals on the map. The distance metric Q is then
based on minimization of the logarithmic transform of the pdfs
that correspond to the map upper and lower confidence intervals
from the posterior variance, which does not involve f̂ . This opti-
mization problem provides the “next-best” point in a sequential
fashion.

The overall aim is to accurately capture the tail statistics of
f̂ through a minimum number of observations of q . Note that
the resulting method should not need to densely sample all
regions in U , since not all regions have significant probability
(fθ may be negligible) or importance (|T̂ | may be small). The
formulated sampling strategy should accurately predict the tail
region of the pdf taking into account both the magnitude of
the map |T̂ | and the value of the probability of the sample θ
(see Fig. 1).

Method Description
An important component of our proposed method is the con-
struction of an inexpensive surrogate for the map T̂ . We use
GPR as our learning method. GPR considers the function as a
Gaussian process, in terms of a distribution in function space
(see SI Appendix, 1 and numerous references, such as ref. 14).
An important property of GPR is that the posterior distribution
is a Gaussian process with an explicit mean and kernel function.
The variance of the posterior can be used as a proxy for the error
or uncertainty of the prediction, which we use along with fθ to
guide selection of the next sample point.

We learn the parameter-to-observation map T̂ : U ⊂Rm→R
using GPR from the datasetDn−1 = {(θ̂i , T̂ (θi))}n−1

i=1 . The GPR

Fig. 1. Areas with large probability in θ are not necessarily associated
with regions where |T̂| is large. The proposed criterion focuses on sampling
regions where both the probability and the magnitude of |T̂| are significant.
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Fig. 2. (Left) Integration of σn(θ) over contours of log fθ(θ) implies sam-
pling of σn(θ) in low probability regions of θ. (Right) On the other hand,
low-order moments of σn(θ) rely only on values of σn(θ) close to high
probability regions of θ; thus, rare events are not sampled sufficiently.

method then provides analytic expressions for the mean Tn−1(θ)
and kernel kn−1(θ, θ′) for the posterior distribution of the Gaus-
sian random function Tn−1(θ)∼GP(Tn−1(θ), kn−1(θ, θ′)) (see
SI Appendix, 1 for the expressions). We can then construct the
following estimate for the pdf f̂ using the posterior mean Tn−1

of the learned surrogate model Tn−1:

fn−1(s) =
dFn−1

ds
=

d

ds

∫
An−1(s)

fθ(θ) dθ, [4]

where An−1(s) = {θ∈U : Tn−1(θ)≤ s} and Fn−1 is the cumu-
lative distribution function.

We now formulate the optimization problem for the next sam-
ple point θ∗. Consider the augmented θ-parameterized dataset
D̃n(θ) =Dn−1 ∪{(θ,Tn−1(θ))}, which approximates Dn(θ) =

Dn−1 ∪{(θ, T̂ (θ))} by using the GPR mean Tn−1 instead of
T̂ . Then, let T̃n(θ; θ∗)∼GP(T̃n(θ; θ∗), k̃n(θ, θ′; θ∗)) denote the
random function trained on the augmented dataset D̃n(θ∗). The
pdf of the random variable T̂ (θ), where θ∼ fθ , is now replaced
by a θ∗-parameterized random probability measure induced by
the Gaussian random function T̃n(θ; θ∗), where θ∼ fθ and θ∗

is a sample point. Note that the mean T̃n(θ; θ∗) of the random
function T̃n(θ; θ∗) in the θ∗-parameterized dataset is identical to
Tn−1(θ) for all θ∗, since the prediction of the value of the map
at the sample point is given by the posterior mean Tn−1(θ) at
iteration n − 1.

The proposed criterion Q is then based on minimization of a
distance metric between the pdfs of the confidence bounds of
Tn . Specifically, let f̃ ±n (·; θ∗) denote the pdfs of the two ran-
dom variables T̃n(θ; θ∗)±ασ̃n(θ; θ∗), where σ̃2

n(θ) = k̃n(θ, θ),
which are the upper and lower bounds of the confidence inter-
val based on the α-scaled SD of the posterior distribution.
The pdfs corresponding to the confidence bounds are explicitly
given by

f̃ ±n (s; θ∗) =
d

ds
F̃±n (s; θ∗) =

d

ds

∫
A±

n (s;θ∗)
fθ(θ) dθ, [5]

where A±n (s) = {θ∈U : T̃n(θ; θ∗)±ασ̃n(θ; θ∗)≤ s}. We use
the 95% interval bounds, so that the SD is scaled by a factor
α= 1.96. The cumulative distribution function F̃+ correspond-
ing to the upper confidence bound T̃n(θ; θ∗) +ασ̃n(θ; θ∗) is a
lower bound for F̃n , and we have the relation F̃+(s)≤ F̃ (s)≤
F̃−(s) for all s . Note that although the map mean of the Gaus-
sian random function T̃n(θ; θ∗) based on the θ∗-parameterized
dataset is identical to the posterior mean Tn−1(θ) at iteration
n − 1, the value of the SD σ̃n(θ; θ∗) now vanishes at the sample
point: σ̃n(θ∗; θ∗) = 0.

The distance metric we propose for the selection of the next
sample point is given by

Q(f̃ +n (·; θ), f̃ −n (·; θ)), 1

2

∫ ∣∣∣log(f̃ −n (s; θ))− log(f̃ +n (s; θ))
∣∣∣ ds,

[6]

where the integral is computed over the intersection of the two
domains that the pdfs are defined over. The next sample point is
then determined by solving the optimization problem:

θn = arg min
θ

Q(f̃ +(·; θ), f̃ −(·; θ)). [7]

This is an L1-based metric of the logarithmic transform of the
pdfs. The logarithmic transform of the densities in the criterion
effectively emphasizes extreme and rare events, as we explicitly
show in theorem 1. The computational savings come from the
construction of a criterion Q that avoids f̂ and instead uses f̃ ±n ,
which involves evaluating the GPR emulator Tn−1 (inexpensive)
and an additional GPR prediction.

We make a few comments on the optimization problem and
the sequential algorithm. The sequential strategy is summarized
in pseudocode in SI Appendix, 3. For the optimization problem,
we use a derivative-free method, specifically a particle swarm
optimizer. The integrations for the pdfs are computed explicitly
from the definition of the Lebesgue integral by partitioning the
codomain of map T . This is much more efficient compared with
a Monte Carlo approach that would result in a very expensive
computational task, as long as the dimensionality of the param-
eter space is low. For high-dimensional parameter spaces, the
computational cost of the integration can become prohibitive,
and in such cases, an order reduction in the parameter space
should be first attempted, or alternatively an importance sam-
pling algorithm could be used to compute the integral. In the
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Fig. 3. (Bottom) A scatterplot of the algorithm sampling of the parameter
space (green points denote the initial random LH samples). (Top Left) The
corresponding L1 error of the logarithmic transform of the pdf between the
GPR mean and truth, and (Top Right) value of the criterion in 5 as a function
of the iteration number.
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Fig. 4. Progression of the pdf estimation as we iteratively sample points. We shade the region between the pdfs f± in red, as a visualization of the
convergence of the pdfs f±. Dashed vertical lines denote 1 SD.

numerical problems, the optimization problem is practically solv-
able for low-dimensional parameter spaces O(5). The starting
design plan size ns , if not already provided, should be small;
a Latin–Hypercube (LH)-based sampling plan should be used
for this purpose. We also recommend as a pretraining period
to process a small number of iterations using a metric without
the logarithmic transform of the densities, such as the following
L2-based metric,

Q ′(f̃ +n (·; θ), f̃ −n (·; θ)), 1

2

∫ ∣∣∣f̃ −n (s; θ)− f̃ +n (s; θ)
∣∣∣2 ds, [8]

to capture the main probability mass (low order moments)
before using the proposed metric that emphasizes extreme and
rare events. In addition, it is not necessary to retrain the GPR
hyperparameters after every iteration, which can remain fixed
after being calibrated from a few iterations. Updating the Gaus-
sian process emulator after the addition of new data points
can be done in O(n2) if the hyperparameters are fixed; oth-
erwise, the GPR emulator must be performed anew in O(n3)
(see SI Appendix, 2). (For low-dimensional θ, since we pre-
sume the dataset size is small, the cost difference may be
negligible.)

Asymptotic Behavior. The first theoretical result relates to the
convergence of the proposed method to the true pdf as the num-
ber of samples goes to infinity (see SI Appendix, 4 for the proof).
The second result shows that the asymptotic form of the criterion
is given by (see SI Appendix, 4 for the proof):

Theorem 1: Let Tn(θ) and σn(θ) from the GPR scheme be
sufficiently smooth functions of θ. The asymptotic behavior of
Q for large n (ensuring small σ ) and small ‖∇σ‖/‖∇T‖ is
given by

Q̃n ,
1

2

∫ ∣∣log f +n (s)− log f −n (s)
∣∣ ds [9]

≈
∫ ∣∣∣∣∣ d

ds
E(σn(θ) · 1Tn (θ)=s)

fn(s)

∣∣∣∣∣ ds, [10]

where E denotes the expectation over the probability
measure Pθ .

Note that the pdf in the denominator under the integral in 9
is a direct implication of our choice to consider the difference
between the logarithms of the pdfs in the optimization crite-
rion. The pdf of the parameter-to-observation map fn in the
denominator of the integrand guarantees that even values of the
parameter θ, where the probability is low (rare events), are sam-
pled. This point is demonstrated by the following corollary (proof
in SI Appendix, 4).

Corollary 1: Let θ : Ω→ [u1, u2]⊂R be a one-dimensional ran-
dom variable, and in addition to the assumptions of theorem 1,

we assume that Tn(θ) is a monotonically increasing function.
Then, the asymptotic value of Q̃n for large n has the following
property:

Q̃n ≥
∣∣∣∣∫

U

σn(θ) d(log fθ(θ)) +

∫
U

σn(θ) d(logT ′(θ))

+ σn(u2)−σn(u1)

∣∣∣∣ , [11]

where ′ denotes differentiation and where it is understood
that the inequality above is based on the asymptotic result
in Eq. 10.

Therefore, for a large value of n , Q̃n bounds (within higher
order error) a quantity that consists of boundary terms and two
integral terms involving sampling the function σ(θ) over the con-
tours of log fθ(θ) and logT ′n(θ). Consider the first term on the
right, which can be discretized as

∫
U

σ(θ) d(log fθ(θ)) = lim
N→∞

N∑
i=1

∆z
∑

{θ : log fθ(θ)=zi}

σ(θ), [12]

where {zi}Ni=1 is an equipartition of the range of log fθ . This sum-
mation is summarized in Fig. 2, Left. The way the integral is
computed guarantees that the integrand σn(θ) will be sampled
even in locations where the pdf fθ has a small value (rare events)
or else the criterion would not converge.

On the other hand, if we had instead chosen a criterion that
focused directly on the convergence of low order statistics for

fixed hyperparameters

20 40 60

100

101

102

retrained hyperparameters

20 40 60

nstart = 4  ncore = 0
nstart = 4  ncore = 8
nstart = 8  ncore = 0
nstart = 8  ncore = 8
latin hypercube

Fig. 5. Comparison of the errors between LH sampling and proposed algo-
rithm under different parameters measured against the exact pdf for the
case where m = 2 in Eq. 15. The parameter ncore is the number of core iter-
ations performed according to an L2 metric, and nstart is the initial dataset
size (where the points are sampled from an LH design).
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Fig. 6. SPH simulation at t = 103.5 s with θ1 = 4.63 and θ2 = 0.662.

σn(θ), such as the same criterion, but without the logarithmic
transformation of the densities, we would have

Q̃ ′n ,
1

2

∫
|f +n (s)− f −n (s)| ds ≥

∣∣∣∣∫
U

σn(θ) d(Fθ(θ))

∣∣∣∣ ,
where Fθ is the cumulative distribution function of θ. The cor-
responding integration is shown in Fig. 2, Right. In such a case,
sampling the function σn(θ) in regions of high probability would
be sufficient for the criterion to converge. However, such a strat-
egy would most likely lead to large errors in regions associated
with rare events since the sampling will be sparse.

Applications
We illustrate the proposed algorithm to two problems. The first
example consists of a nonlinear oscillator stochastically forced
by a colored noise process; this application serves to illustrate
the main ideas of the proposed method. The second application,
involving 3D hydrodynamic wave impacts on an offshore plat-
form (a system with millions of degrees of freedom), showcases
the applicability of the proposed method to real-world setups
where computation of extreme event statistics using traditional
approaches is prohibitively expensive, since the simulation times
of experimental runs are on the order of several hours.

Nonlinear Oscillator Driven by Correlated Stochastic Noise. Con-
sider the nonlinear oscillator

ẍ + δẋ +F (x ) = ζ(t), [13]

forced by a stationary, colored noise with correlation function
C (τ) =σ2

ζe
−τ2/2`2ζ and the nonlinear restoring term given by

F (x ) =

αx , 0≤ |x | ≤ x1
αx1, x1< |x | ≤ x2
αx1 +β(x − x2)3, x2≤ |x |.

[14]

Since the system is stochastically forced, it is necessary to use an
expansion to obtain a parameterization in terms of a finite num-
ber of random variables. We use a Karhunen–Loève expansion
(see SI Appendix, 5) to obtain

ẍ (t) + δẋ (t) +F (x (t)) =

m∑
i=1

θi(ω)ei(t), t ∈ [0,T ], [15]

which is truncated to a suitable number m . For illustration, we
take our quantity of interest as the average value of the response
so that the parameter-to-observation map is defined by T (θ),
x (t ; θ) = 1

T

∫ T

0
x (t ; θ) dt .

We consider a three-term truncation m = 3. The system
parameters are given by δ= 1.5, α= 1.0, β= 0.1, x1 = 0.5, and
x2 = 1.5, and the forcing parameters are σζ = 4 and `ζ = 0.1,
with t ∈ [0, 25]. For comparisons, the exact pdf is obtained
by sampling the true map from 64,000 points on a 40× 40×
40 grid.

In Fig. 3, we illustrate the sampling as determined by the pro-
posed algorithm in addition to the L1 log error between the exact
pdf and the GPR mean prediction. In these simulations, we start
from a dataset of 6 points selected according to an LH design.
To capture the main mass of the pdf, before focusing on the
tails of the distribution, we perform 12 iterations using the Q ′

distance in Eq. 8 before moving on to the criterion using the
distance metric Q in Eq. 6 involving the logarithms of the pdfs.
Observe the unique shape that the sampling algorithm has iden-
tified in θ space, which spans regions in θ associated with finite
probability and large values of q . Fig. 4 demonstrates the pro-
gression of the estimated pdf as a function of the iteration count.
Even after only 100 samples, we have already captured the qual-
itative features of the exact pdf and have very good quantitative
agreement.

We have explored the convergence properties of the algo-
rithm, and in Fig. 5, we compare the proposed sampling method
to space-filling LH sampling. The LH strategy is not iterative
and thus must be started anew, which puts the LH sampling at
a large disadvantage. Nonetheless, this serves as a benchmark to
a widely used reference method for the design of experiments
due to its simplicity. In the figure, the purple curve represents
the mean LH design error and the shaded region represents
the SD about the mean, which are computed by evaluating 250
number of random LH designs per fixed dataset size. Even
considering the variance of the LH curve, the proposed algo-
rithm under various parameters (initial dataset size or number
of “core” iterations where the Q criterion uses the L2 met-
ric) is observed to outperform the LH strategy by nearly an
order of magnitude in the L1 error of the logarithm of the
pdfs. This demonstrates the favorable properties of the proposed
sampling strategy for accurately estimating the tail of target
distribution.

Fig. 7. Progression for pdf density prediction for the force variable.
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Hydrodynamic Forces and Moments on an Offshore Platform. Here
we apply the sampling algorithm to compute the probability
distributions describing the loads on an offshore platform in
irregular seas. The response of the platform is quantified through
direct, 3D numerical simulations of Navier–Stokes using the
smoothed particle hydrodynamics (SPH) method (15) (Fig. 6).
Our numerical setup parallels that of a physical wave tank
experiment and consists of a wave maker on one end and a
sloping “beach” on the other end of the tank to quickly dissi-
pate the energy of incident waves and avoid wave reflections.
Further details regarding the simulations are provided in SI
Appendix, 6.

Wind-generated ocean waves are empirically described by
their energy spectrum. Here, we consider irregular seas with
JONSWAP spectral density (see SI Appendix, 6 for details and
parameters). While realizations of the random waves have the
form of time series, an alternative description can be obtained
by considering a sequence of primary wave groups, each char-
acterized by a random group length scale L and height A (see,
e.g., ref. 16). This formulation allows us to describe the input
space through just two random variables (much fewer than what
we would need with a Karhunen–Loeve expansion). Following
ref. 16, we describe these primary wave groups by the represen-
tation u(x ) =Asech(x/L), which is an explicit parameterization
in terms of L and A. Thus, L and A correspond to θ1 and
θ2 in the notation of Eq. 1. The statistical characteristics of
the wave groups associated with a random wave field (such as
the one given by the JONSWAP spectrum) can be obtained
by applying the scale-selection algorithm described in ref. 17.
Specifically, by generating many realizations consistent with the
used spectrum, we use a group detection algorithm to identify
coherent group structures in the field along with their length
scale and amplitude (L and A). This procedure provides us with
the empirical probability distribution fθ of the wave field and
thus a nonlinear parametrization of the randomness in the input
process.

The quantities of interest in this problem are the forces and
moments acting on the platform. The incident wave propagates
in the x direction, and as such, we consider the pdf of the force in
the x direction Fx and the moment My about the bottom center
of the platform:

qf = max
t∈[0,T ]

|Fx (t)| and qm = max
t∈[0,T ]

|My(t)|. [16]

In Fig. 7, we show the results of the progression of density pre-
diction for the force variable. In these experiments, we begin
by arbitrarily selecting four initial sample points from an LH
sampling strategy. Next, we perform four iterations using the L1

distance metric to quickly capture the main mass of the distri-
bution before focusing on the distribution away from the mean
that uses the L1 metric of the logarithmic of the pdf. The lightly
shaded red region in the pdf plots is a visualization of the uncer-
tainty in the pdf, obtained by sampling the GPR prediction and
computing the pdf for 200 realizations and then computing the
upper (lower) locus of the maximum (minimum) value of the
pdf at each value. The figures demonstrate that with 15 (i.e.,
14 total sample points) iterations (together with the four sam-
ples in the initial configuration), we are able to approximate the
pdf to good agreement with the “exact” pdf, which was com-
puted from a densely sampled grid. In SI Appendix, Figs. S5–S7,
we also present the sampled map where it can be seen that the
algorithm selects points associated with large forces and nonneg-
ligible probability of occurrence. In the same figures, results for
the momentum and an additional spectrum are included. Note
that for this problem, the GPR operates on the logarithm of the
observable because the underlying function is always positive.

Conclusions
We developed and studied a computational algorithm for the
evaluation of extreme event statistics associated with systems
that depend on a set of random parameters. The algorithm
is practical for high-dimensional systems but with parameter
spaces of moderate dimensionality and where each sample is
very expensive to obtain relative to the optimization of the next
sample. The method provides a sequence of points that lead to
improved estimates of the probability distribution for a scalar
quantity of interest. The criterion for the selection of the next
design point emphasizes the tail statistics. We prove asymp-
totic convergence of the algorithm and provided analysis for its
asymptotic behavior. We also demonstrated its applicability to
two problems, one involving a demanding system with millions
degrees of freedom.
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