












monthly climate observations from three datasets: 1) precipitation, tem-
perature, and potential evapotranspiration data from the Climatic Research
Unit Time Series (CRU) TS 4.01 (42), enhanced by the incorporation of pre-
cipitation and temperature records from the Argentinean Institute of Snow,
Ice and Environmental Research (IANIGLA-CONICET) database (SI Appendix,
section 1 and Fig. S1); 2) precipitation and air temperature dataset from the
University of Delaware (43); and 3) the precipitation dataset from Global
Precipitation Climatology Centre (44). The computed monthly scPDSI data
were seasonalized to develop average data for the austral summer season
(DJF). The DJF scPDSI reflects spring–summer soil moisture conditions from
2,715 grid cells (0.5° longitude by 0.5° latitude) covering the study domain
(12° to 56°S; 50° to 80°W) (SI Appendix, section 2).

During the last several decades, tree ring scientists from Chile, Argentina,
and Bolivia have vastly increased tree ring sample collections in SA (17). The
SADA includes data from 286 tree ring chronologies (SI Appendix, section 3
and Table S1), mainly concentrated on both sides of the Andes Cordillera
(16° to 56°S), from the Altiplano and intermontane subtropical valleys to the
Patagonian forests at the southern tip of the continent (Fig. 1A). Addition-
ally, new collections from tropical lowlands have allowed extension of the
geographical coverage of tree ring records to lower latitudes. The target
period (CE 1400 to 2000) for reconstruction of scPDSI is the consequence of a
relatively high number of longer tree ring chronologies and good spatial
coverage along the Andes (SI Appendix, Fig. S3). To preserve medium fre-
quency variability due to climate, the 286 tree ring chronologies were
standardized using “signal-free” methods (45) (SI Appendix, section 4).

Reconstruction Method. A modification of the well-tested nested PPR method
(22) was used to produce the SADA (SI Appendix, section 5). The version
presented here is an average derived from an ensemble approach using
15-ensemble members, where each member uses a different search radius
(200-, 500-, 800-, 1,100-, and 1,500-km distance) to locate the tree ring
chronologies for reconstructing scPDSI at each grid point based on a
weighted power correlation (P = 0; P = 1; P = 2) between tree ring chro-
nologies and scPDSI (23). The 15 output model members were averaged,
recalibrated, and revalidated directly against instrumental data. The aver-
age correlation between ensemble members at each grid point was then
calculated. Because opposite precipitation trends occur on both side of the
highest Andes region (24° to 38°S), we produce two independent
15-member ensemble reconstructions on each sides of the Andes that were
merged to create a final reconstruction.

Comparison between Historical and Tree Ring-Based Hydroclimate Reconstructions.
SEA, a nonparametric statistical technique, was used to determine the rela-
tionships between the regional scPDSI reconstructions and drought/pluvial
events from climate reconstructions based on historical records. The selected
scPDSI regions (red rectangles in Fig. 1A) for these analyses were the Al-
tiplano (17° to 23°S; 66° to 70°W), central Chile (30° to 37°S; 70° to 72°W),
and part of La Plata basin (31° to 37°S; 56° to 61°W). The historical sources
are precipitation records from Potosí, Bolivia (Altiplano; ref. 21), the snow
and drought records from the Andes region of central Chile (ref. 46 and
sources references therein), and the flood records in the city of Santa Fe
(mid-Paraná river, La Plata basin; ref. 29). In this analysis, the regional
scPDSI records were used as the background time series and the dates of
dry/wet years in the historical series as event years (Dataset S1). For each
event, a 9-y lag window was used with the event year as the central value
plus 4 y before and after the event. The 9-y scPDSI data were averaged for
each event to produce a mean pattern related to the historical event. The
mean scPDSI pattern for the selected years was statistically evaluated for
significance (95% confidence interval) by performing 1,000 Monte Carlo
simulations (47) using random years from the scPDSI record.

Analysis of Hydrological Extreme Events.Dry/wet events were characterized by
their intensity and spatial extent. We calculated the average of scPDSI for the
entire SADA domain from CE 1400 to 2000. Extreme intensity dry/pluvial
events were determined by including scPDSI values lower/higher than the
95th and 5th percentiles, respectively. To determine large spatially wide-
spread dry/wet events, we first calculated the interannual fluctuations in the
percent area of severe dry/wet conditions, i.e., the total number of grid points

with scPDSI values less than −2 for severe dry and greater than 2 for severe
wet years. Those severe dry/wet events that exceeded the 95th percentile of
spatial extent were considered extreme spatially widespread pluvial/drought
events. Temporary changes in the occurrence-rate estimation of extremes in
intensity and spatial extent of drought/pluvial events were estimated using
the nonparametric kernel function. This technique allows the detection of
nonmonotonic trends without imposing parametric restrictions. For this
purpose, a Gaussian kernel function was applied in order to estimate the
probability of occurrence of one specific extreme event using a 60-y band-
width. To better interpret these estimates, confidence bands at the 95%
level were obtained using 1,000 bootstrap simulations (48, 49).

MCA for Reconstructed scPDSI and Climate Modes. To describe how SST and
geopotential height (500 mb) (SI Appendix, section 10, for dataset reference)
covary with the summer scPDSI from the SADA and the ANZDA, we used
MCA. This method is widely used in climate research and identifies coupled
patterns in two data fields that share the maximum amount of covariance
(50). This statistical tool identifies the common signal while separating sto-
chastic noise from other factors. The leading modes obtained by MCA were
used as estimators of ENSO (ENSO-e) and SAM (SAM-e) variability for the
past 500 y (Dataset S2). The resulting time series of the difference between
both climate index estimators was used to determine the anomalous neg-
ative/positive values by the 5th and 95th percentiles, respectively (Dataset
S3). The 25 (26) negative (positive) values were associated with coupled
anomalous negative (positive) ENSO-e and positive (negative) SAM-e events.

Data Deposition. Tree ring chronologies, instrumental and reconstructed
scPDSI (SADA) are available at the Center for Climate and Resilience Research
(CR)2, http://www.cr2.cl/datos-dendro-sada/ (51). Historical hydroclimate re-
constructions together with regional scPDSI used to validate each proxy are
presented in Dataset S1. The main leading modes used as estimators of ENSO
and SAM variability for the past 500 y together with the 25 (26) negative
(positive) coupled ENSO/SAM events are also presented in Datasets S2 and
S3. Additional instrumental climate data used in the paper are available in
the corresponding hosting websites.
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