The genetic basis for PRC1 complex diversity emerged early in animal evolution

James M. Gahan, Fabian Rentzsch, and Christine E. Schnitzler

Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved August 9, 2020 (received for review March 20, 2020)

Polycomb group proteins are essential regulators of developmental processes across animals. Despite their importance, studies on Polycomb are often restricted to classical model systems and, as such, little is known about the evolution of these important chromatin regulators. Here we focus on Polycomb Repressive Complex 1 (PRC1) and trace the evolution of core components of canonical and non-canonical PRC1 complexes in animals. Previous work suggested that a major expansion in the number of PRC1 complexes occurred in the vertebrate lineage. We show that the expansion of the Polycomb Group Ring Finger (PCGF) family, an essential step for the establishment of the large diversity of PRC1 complexes found in vertebrates, predates the bilaterian cnidarian ancestor. This means that the genetic repertoire necessary to form all major vertebrate PRC1 complexes emerged early in animal evolution, over 550 million years ago. We further show that PCGF5, a gene conserved in cnidarians and vertebrates but lost in all other studied groups, is expressed in the nervous system of the sea anemone Nematostella vectensis, similar to its mamalian counterpart. Together this work provides a framework for understanding the evolution of PRC1 complex diversity and it establishes Nematostella as a promising model system in which the functional ramifications of this diversification can be further explored.

Polycomb | PRC1 | PCGF | cnidarian | Nematostella

The acquisition and maintenance of cellular identity requires spatial and temporal control of gene expression programs and involves the function of activating and repressive transcriptional regulators. Among the repressive regulators, Polycomb Repressive Complexes (PRCs) play a central role in a broad spectrum of gene expression programs. Polycomb group proteins were first described in Drosophila melanogaster (hereafter Drosophila) as genes essential for patterning during embryogenesis and were subsequently shown to play crucial roles in cell differentiation and the maintenance of cell fate during development in many systems (1). Polycomb group proteins establish “facultative” heterochromatin and are required to maintain repression of key developmental genes such as Hox genes. As such, loss of Polycomb silencing often results in homeotic transformations due to misexpression of Hox genes (1). In addition, Polycomb proteins can maintain genes in a poised state, which is characterized by the simultaneous presence of distinct histone modifications that are associated with transcriptional repression and activation (2). This poised state allows the rapid activation of transcriptional programs and accordingly, the Polycomb system is not only required for repression but also for the temporal control of transcriptional activation during development (2). In addition to this, Polycomb proteins are frequently found mutated in cancer patients and represent a popular therapeutic target (3).

Polycomb proteins belong to one of two complexes: Polycomb Repressive Complex 1 or 2 (PRC1 or PRC2, respectively). PRC2 complexes catalyze trimethylation of lysine 27 on histone H3 (H3K27me3), a repressive histone modification (4). PRC1, on the other hand, ubiquitylates histone H2A and mediates chromatin compaction and gene silencing (5–13). The classical model of transcriptional silencing by Polycomb complexes entails first recruitment of PRC2, which deposits H3K27me3, followed by PRC1 recruitment through its H3K27me3 binding subunit, leading to H2A ubiquitylation and repression (14–16). In recent years, this model has been elaborated upon extensively, revealing a more complex interplay between PRC1 and PRC2 components, histone modifications, and other factors such as DNA methylation and CpG content that regulate the recruitment and activity of both complexes and subsequent transcriptional repression (17–31).

Both PRC1 and PRC2 are large, multisubunit protein complexes. In Drosophila, PRC2 consists of a core of three proteins: Extra sex combs (Esc), Suppressor of Zeste 12 [Su(z)12], and Enhancer of Zeste [E(z)] (4) (see SI Appendix, Table S1 for nomenclature of Polycomb proteins). PRC1 consists of four proteins: Sex combs extra (Sce or dRING), Posterior sex combs (Psc or its homolog Su(z)2], Polyhomeotic (Ph), and Polycomb (Pc). Vertebrate PRC2 is highly similar to that of Drosophila, with EED, SUZ12, and EZH1/2 as the orthologs of Esc, Su(z)12, and E(z), respectively (4). PRC1, in contrast, is thought to have undergone an expansion in vertebrates, represented by a collection of related complexes each sharing a core consisting of RING1A or RING1B, vertebrate homologs of dRING, and one of the six vertebrate Polycomb Group Ring Finger (PCGF) proteins, the homologs of Drosophila Psc (32). cPRC1.2 and cPRC1.4, the canonical PRC1 complexes, consist of either PCGF2 or PCGF4, respectively, in a complex with RING1A/B.

Significance

Animals, to maintain patterns of gene expression throughout life, utilize the Polycomb system to repress transcription. Vertebrates have a large number of Polycomb protein complexes, particularly belonging to the Polycomb Repressive Complex 1 (PRC1) family. Here we show that, contrary to current hypotheses, the large number of complexes found in vertebrates appeared early in animal evolution and was subsequently reduced in many lineages. Among the species studied here, only anthozoan cnidarians (corals and sea anemones) and vertebrates have the full set of possible PRC1 complexes and therefore it will be interesting to study their function in these animals. This study highlights the importance of nonstandard model organisms when studying the evolution of processes such as gene silencing by Polycomb.

Author contributions: J.M.G. and F.R. designed research; J.M.G. performed research; J.M.G. and C.E.S. analyzed data; and J.M.G., F.R., and C.E.S. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

Author contributions: J.M.G. and F.R. designed research; J.M.G. performed research; J.M.G. and C.E.S. analyzed data; and J.M.G., F.R., and C.E.S. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

PNAS Latest Articles | 1 of 10

www.pnas.org/cgi/doi/10.1073/pnas.2005136117 PNAS Latest Articles | 1 of 10

Supporting Online Material

SI Appendix.

one Chromobox protein (CBX, the orthologs of Drosophila Pc), and one Polyhomeotic-like protein (PHC) (32) (Fig. L4). Further diversification within the vertebrate canonical complexes occurs due to the presence of five different potential CBX subunits (33–36) and three different PHC proteins (32). The non-canonical or variant PRC1 complexes, ncPRC1.1 to 1.6, consist of one PCGF protein, as well as RING1A/B, RYBP or its homolog YAF2, and other complex-specific subunits (32, 33, 37–39) (Fig. L4). The integration of either a CBX protein (in cPRC1) or RYBP/YAF2 (in ncPRC1) is based on their mutually exclusive interaction with RING1A/B (32, 33, 40, 41). The majority of H2A ubiquitylation is mediated by the non-canonical complexes (42) while only the canonical complexes can be recruited by H3K27me3 through their CBX subunit (15, 16, 43) and have the ability to mediate both local compaction and long-range interactions (6, 10–12, 44, 45). While complete loss of PRC1 via deletion of RING1A/B is lethal (46, 47), different PRC1 complexes can have distinct roles, owing to both the different subunits but also tissue-specific expression of complex members (19, 22, 39, 48–56). In Drosophila, in addition to the canonical complex outlined above, two non-canonical PRC1 complexes have been described: dRAF, which contains KDM2, a lysine demethylase subunit (57), and a complex which contains an alternative Psc homolog (58).

PRC1 complexes containing RING1/2 and PCGF proteins are present in plants, but many of the other components in these complexes are distinct to those in animals (59–62). Similarly, RING1/2 and PCGF are encoded in the genomes of many unicellular eukaryotes like choanoflagellates, ichthyosporeans, and filastereans (1), but it is not known whether they form complexes with PRC1-like functions. Central to the current understanding of the evolution of PRC1 complexes, previous analyses have shown that compared with Drosophila, vertebrates have an expanded number of CBX, PHC, and PCGF proteins. This supported a scenario in which the diversity of PRC1 complexes mainly arose in vertebrates (63, 64).

Here we searched the genomes of a broad selection of animals and closely related unicellular eukaryotes for the presence of genes encoding the core proteins required to make all possible PRC1 complexes described above and performed a phylogenetic analysis on PCGF proteins to understand their evolution. While we find the expansion of CBX and PHC proteins in vertebrates is likely correct, we determined that, contrary to current thinking, the diversity found in mammalian PCGF proteins emerged more than 550 million years ago, before the last common ancestor of

![Fig. 1. An animal-specific set of core PRC1 components. (A) Schematic showing the core components of all known PRC1 variants in vertebrates. (B) Table showing the presence or absence as well as the number of PCGF, CBX, PHC, RING1/2, and RYBP homologs in representative animal and single cell eukaryote species. Green indicates the presence of a homolog, red indicates absence, and yellow indicates cases where there is ambiguity. The number of homologs in a particular species is indicated both by number and also by intensity of green color. The full set of the PRC1 components is found only in animals. Phylogeny is based on refs. 68 and 94.](image-url)
bilaterians and cnidarians (65). Thus, the genetic basis for PRC1 complex diversity appeared early in animal evolution but has been lost secondarily in different animal lineages. Using a transgenic reporter line in the anthozoan cnidarian *Nematostella vectensis*, we further show that PCGF5 genes may have ancient roles in the nervous system.

Results

The complement of animal PRC1 genes. The complement of animal PRC1 genes. We searched 28 genomes, representing diverse animal clades and the two closest unicellular outgroups to animals, choanoflagellates and filastereans (see Dataset S1 for a list of genomes and references) for the presence of homologs of the core components of canonical or non-canonical PRC1, i.e., RING1/2 (genes encoding RING1A/B), PCGF, CBX, PHC, and RYBP, using either *Drosophila* or human sequences as query (Materials and Methods). The presence/absence as well as the number of genes per species are shown in Fig. 1B (see also ref. 1). There are single copies of RING1/2 in most species with the exception of some vertebrates where there are two copies, RING1 and RING2, and in the platyhelminth *Schmidtea mediterranea* where there are also two RING1/2 genes. We found no CBX and PHC genes outside animals and both genes were lost in the lineage leading to the nematode *Caenorhabditis elegans*. We identified only one copy of PHC in most animals except vertebrates where we find three copies, the sponge *Amphimedon queenslandica* which has two genes, and *D. melanogaster* which has two almost identical PHC genes, the result of a recent duplication event (66). For the CBX genes, we found a relatively large diversity in gene number (ranging from one to eight) in different animals. RYBP, in contrast, is present as a single copy gene in most invertebrates, but is represented by two paralogs in vertebrates, named RYBP and YAF2. Some invertebrate species (the oyster *Crassostrea gigas*, the priapulid worm *Priapulus caudatus*, and the sea urchin *Strongylocentrotus purpuratus*) lack an RYBP homolog, likely due to secondary loss as these species are only distantly related to each other, though we cannot rule out the possibility that these genes are missing from the genome assemblies. Interestingly, a putative homolog of RYBP, the unique component of non-canonical PRC1, can be found in the choanoflagellate *Salpingoeca rosetta*, but not in another choanoflagellate, *Monosiga brevicollis*, and also not in the filasterean *Capisagora owczarzaki* as previously noted (1). The level of sequence similarity of the *S. rosetta* gene compared to animal RYBP genes is, however, very low and it does not contain the Yaf2/RYBP C-terminal binding motif which is present in all other RYBP genes. While it is possible that there was a RYBP gene present in the last common ancestor of choanoflagellates and animals that did not contain a Yaf2/RYBP C-terminal binding motif, we prefer to label this *S. rosetta* gene as a putative RYBP gene (shown in Fig. 1B as a question mark).

Surprisingly, we found a wide range in the total number of PCGF genes per animal species (Fig. 1B). Previous work had shown that the PCGF family expanded only in vertebrates but we found six to seven PCGF genes in anthozoan cnidarians and eight in the amebozoan *Capitella teleta*, more than found in humans. This diversity in the number of PCGF genes in each animal genome we searched suggests many lineage-specific gains and/or losses.

Early evolution of PCGF diversity. Thus, in contrast to RING1/2, PHC, and RYBP genes, the number of PCGF genes varies considerably among animals. This observation prompted us to use phylogenetic analyses to understand the evolution of the PCGF gene family in more detail. We performed a phylogenetic analysis on the full set of taxa in Fig. 1B using PCGF and RING1/2 proteins as an outgroup or PCGF proteins alone using both maximum likelihood and Bayesian methods (SI Appendix, Figs. S2–S5). We also ran the analysis on the PCGF and RING1/2 proteins with a reduced set of sequences corresponding to cnidian and selected bilaterian lineages (Fig. 2 and SI Appendix, Fig. S1). Genes with long branch lengths or low support in the full set trees were removed. Importantly, exclusion of these species had no effect on the overall topology of the tree. In all cases, the overall topology of the tree was similar. We found that the PCGF genes fall into five families, which we termed PCGF1, PCGF2/4, PCGF3, PCGF5, and PCGF6 based on the vertebrate homologs present in the groups. The canonical PCGF2/4 and the non-canonical PCGF1, 3, 5, and 6 genes form sister groups, with additional subgrouping of the non-canonical genes into PCGF1, PCGF3, PCGF5, and PCGF6 subgroups (Fig. 2). Fig. 3A summarizes the presence of genes within the different families in all bilaterian and cnidarian species studied with the exception of *Ciona intestinalis* as we could not confidently assign some genes from this species. All of the PCGF families contain sequences from bilaterian and cnidarian genomes indicating they originated before the split of these two major animal groups. All but the PCGF5 group also contain sequences from both protostomes (*Ecdysozoa* and *Spiralia*, see Fig. 1) and nonvertebrate deuterostomes. Although many species have more than one gene within the PCGF2/4 clade, it is likely that these arose through lineage-specific duplications. This is the case for vertebrate PCGF2 and PCGF4 (Bm1) as well as for *Drosophila Psc* and *Suz* (2) and the two PCGF2/4 genes in anthozoan cnidarians. There have also been extensive losses of many PCGF genes, most strikingly that of PCGF5, which has been lost at the base of the protostomes but also in the non-vertebrate deuterostomes studied here. Additional losses have occurred in specific lineages, for example loss of PCGF6 in *Ecdysozoa* and PCGF3 in hydrozoan cnidarians (Fig. 3A). Among the analyzed taxa, anthozoan cnidarians (three species) and vertebrates (four species) are the only ones in which all five PCGF subgroups are present. The position of the genes from the unicellular groups (choanoflagellates and filastereans) as well as other non-bilaterian animal groups (ctenophores, sponges, and placozoans) was ambiguous in the trees. The two choanoflagellate PCGF genes fall either within the PCGF3 clade or as sister to the PCGF5 clade, depending on whether RING1/2 genes are included in the analysis (SI Appendix, Figs. S2–S5). This may be due to some ancestral characteristics of PCGF being retained in the PCGF3 genes or alternatively due to convergence. Similarly, the single PCGF gene in the filasterean *C. owczarzaki* has a shifting position within the trees (SI Appendix, Figs. S2–S5). In neither case do these positions have a high level of support. A similar situation is seen for some or all of the genes from the ctenophore *Mnemiopsis leidyi*, the placozoan *Trichoplax adhaerens*, and the sponge *A. queenslandica* (SI Appendix, Figs. S2–S5). Thus, it is not possible from this analysis to confidently derive conclusions about PCGF gene evolution before the last common cnidian–bilaterian ancestor.

A cluster of PCGF genes ancestral for cnidarians and bilaterians. Among the sampled genomes, anthozoan cnidarians, an animal clade containing corals and sea anemones, are the earliest-diverging animals that have at least one member of each of the PCGF families and indeed are the only group outside vertebrates to have this. We therefore sought to investigate this group further. Although anthozoan cnidarians contained a member of all PCGF groups, hydrozoans, a distantly related group of cnidarians (67, 68), contained only PCGF1, PCGF2/4, and PCGF5 genes. We therefore first sought to understand better the pattern of PCGF evolution within cnidarians. We searched two additional cnidian genomes representing two other cnidian clades which are more closely related to hydrozoans than anthozoans. The ctenozoan *Morbakka virilenta* (a box jellyfish) and the scyphozoan *Aurelia aurita* (moon jellyfish) have homologs of
Fig. 2. Subgroups of PCGF genes emerged early in animal evolution. Phylogenetic analysis of cnidarian and bilaterian PCGF and RING1/2 genes according to Bayesian analysis using RING1/2 genes as outgroup. There are five major families of PCGF genes (PCGF1, 2/4, 3, 5, and 6), which are highlighted by different colored boxes. Numbers above branches correspond to Bayesian posterior probabilities. Only values ≥0.7 are shown. Red bars and red font indicate the position of vertebrate genes, blue bars and blue font indicate the position of cnidarian genes, and green bars and green font indicate the position of D. melanogaster genes. Species names are abbreviated as follows: Ad, Acropora digitifera; Ap, Aiptasia pallida; Am, Apis mellifera; Bl, Branchiostoma lanceolatum; Cg, Crassostrea gigas; Ct, Capitella teleta; Dr, Danio rerio; Dm, Drosophila melanogaster; Gg, Gallus gallus; Ha, Hyalella azteca; Hs, Homo sapiens; He, Hydractinia echinata; Hv, Hydra vulgaris; La, Lingula anatina; Lg, Lottia gigantea; Nv, Nematostella vectensis; Pc, Priapulus caudatus; Sm, Schmidtea mediterranea; Sp, Strongylocentrotus purpuratus; Xt, Xenopus tropicalis.
PCGF1, 2/4, 3, and 5. PCGF6 was therefore lost early in the medusozoan clade (which includes hydrozoans, cubozoans, and scyphozoans) with PCGF3 being lost later only in hydrozoans (Fig. 3A and SI Appendix, Fig. S6).

We particularly focused on the anthozoan Nematostella vectensis (hereafter Nematostella), the starlet sea anemone, for further investigation due to the availability of experimental tools (69). While analyzing the PCGF complement in Nematostella we noted that four of the Nematostella genes are arranged in a genomic cluster: NvPCGF5a, NvPCGF5b, NvPCGF3, and NvPCGF1 (Fig. 3B). We then looked in other anthozoan genomes and found the genomic cluster to be conserved in both Aiptasia pallida, another sea anemone, and Acropora digitifera, a coral (Fig. 3B). Interestingly, the order of the genes along the cluster in anthozoans reflects their evolutionary relationships that we found in our phylogenetic analysis: the PCGF5 genes (there are two paralogs in Nematostella and A. digitifera) are located next to each other, the most closely related PCGF3 is located adjacent to the PCGF5 genes, and the more distantly related PCGF1 is located on the other side of PCGF3. We then looked at bilaterian genomes to assess whether this cluster was retained there. We found that several protostome genomes have a cluster consisting of PCGF3, PCGF1, and the
non-PCGF gene HPS1, which was also found in the anthozoan cluster. Within deuterostomes we did not find any evidence of a cluster. In the sea urchin, *S. purpuratus*, however, the three genes found in the protostome cluster, PCGF1, PCGF3, and HPS1, are found on the same scaffold although spread over ~20 Mb. In several vertebrates (*Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis*) we see that PCGF5, PCGF6, and HPS1 are located on the same chromosome and are within ~20 Mb of each other. Together this suggests that a cluster containing all non-canonical *PCGF* genes as well as HPS1 was present in the last common ancestor of cnidarians and bilaterians and that some aspects of this cluster are maintained in several species. Among the animal genomes sampled here, the complete cluster was only found in anthozoan cnidarians.

Distinct spatial and temporal expression of PCGF genes in *Nematostella*. To investigate whether distinct *PCGF* genes in *Nematostella* may have distinct functions we sought to analyze their expression. We first interrogated a previously published developmental time course (70), which integrates RNA sequencing (RNAseq) data from several studies (71–73). We saw that both canonical *PCGF* genes, *NvPCGF2a* and *NvPCGF2b*, had similar expression dynamics during development although with different levels (SI Appendix, Fig. S7). In the case of the non-canonical *PCGF* genes, we found that there is substantial variability in their expression (Fig. 4A). *NvPCGF5a*, for example, is not maternally expressed and its expression reaches maximum levels around planula stage (~48 h postfertilization) while *NvPCGF5b* is maternally expressed and reaches the same level at planula stage as *NvPCGF5a* but with higher expression during early embryonic stages. *NvPCGF3* is also maternally expressed and its levels remain steady until blastula stages when its levels drastically increase before plateauning. Both *NvPCGF1* and *NvPCGF6* are highly expressed maternally and high levels of both genes are maintained during early embryogenesis before leveling out at a lower level after gastrulation.

Some vertebrate *PCGF* genes display spatial expression patterns, with higher levels in specific tissues or cells (74–76). We performed RNA in situ hybridization at different developmental stages to determine whether such spatial regulation also occurs for *Nematostella* *PCGF* genes. *NvPCGF3* is expressed at blastula stage in two distinct domains on opposing sides of the embryo (Fig. 4B), presumably corresponding to the oral and aboral poles. At gastrula stage, this pattern continues with expression being localized to oral and pharyngeal tissue and, less pronounced, to the aboral pole (Fig. 4C and D). *NvPCGF5a* can first be detected by in situ hybridization at early gastrula stage when it is expressed in scattered cells on the aboral side of the embryo (Fig. 4E). This expression pattern continues into later stages, although weaker, and spreads into the endoderm (Fig. 4F). Localized expression of *NvPCGF5b* is first detectable at planula stage when it is expressed in the apical tuft, albeit very weakly (Fig. 4G). We note that the RNAseq data (Fig. 4A) show that both *NvPCGF5* paralogs are also expressed at stages at which we cannot detect them by in situ hybridization, potentially due to low level and/or broad expression at those stages. We were unable to find distinct/localized expression patterns for the other *PCGF* genes.

Given that the *NvPCGF5a* expression pattern is similar to that seen for neural genes at these stages (77–79) and that vertebrate PCGF5 is highly expressed in neural progenitors (56, 74) we wanted to investigate further these *NvPCGF5a*-expressing cells. To do this we generated a transgenic reporter line expressing eGFP under the control of the *NvPCGF5a* regulatory elements. eGFP could be detected in these animals in scattered cells in the aboral half of the embryo from gastrula stage on (Fig. 5A–C) and later additionally at lower levels throughout the aboral tissue (Fig. 5B and C). The morphology of the scattered cells matched that expected of neurons and/or sensory cells with many cells seen with an apical cilium and basally branching neurites. We went on to cross this line to other published neuronal reporter lines. This revealed that the *NvPCGF5a*:eGFP+ cells represent a subpopulation of both the *NvFoxQ2a::mOrange+* sensory cells (80) (Fig. 5D) and the *NvElav1::mOrange+* neurons (81) (Fig. 5E). Together these data show that *NvPCGF5a* is expressed in a subset of neural cells in *Nematostella*.

Discussion

Here we analyze the evolution of the core components of canonical and non-canonical PRC1 in animals. PRC1 complexes were thought to have experienced a diversification in vertebrates, mainly due to expanded repertoires of CBX and PCGF genes (56, 61). We show that although some expansion of PRC1 components did indeed occur in vertebrates, i.e., expansion of CBX and PHC genes, the expansion of the *PCGF* gene family occurred much earlier, before the last common ancestor of cnidarians and bilaterians. Our analysis indicates that there were likely five PCGF proteins in the last common ancestor of
bilaterans and cnidarians and that there was only one subsequent duplication, within the PCGF2/4 family, in the lineage leading to vertebrates. This is an intriguing finding as PCGF proteins define the composition and identity of the main canonical and non-canonical PRC1 complexes (32). We show that the non-canonical PCGF genes (those encoding PCGF1, 3, 5, and 6) are more closely related to each other than to the canonical PCGF2/4 family and that the non-canonical genes arose from sequential duplications of an ancestral gene. This is evident in anhzoan cnidarians where NvPCGF5, NvPCGF3, and NvPCGF1 genes have been maintained in a genomic cluster. Some protostome genomes contain incomplete versions of this cluster lacking PCGF5, which has been lost in the clades analyzed here. While the existence of this cluster is informative for the evolution of PCGF genes, it remains to be determined which genomic features favored its retention and whether the organization in a cluster has functional consequences.

The previously assumed expansion of Polycomb complexes in vertebrates has been deduced primarily from comparisons to Drosophila and C. elegans. Drosophila has only three PCGF genes, two belonging to the PCGF2/4 family and one to the PCGF3 family. Despite the lack of a PCGF1 homolog, there is a PRC1 complex in Drosophila, dRAF, which resembles vertebrate ncPRC1.1 in that it contains the lysine demethylase KDM2, but differs from ncPRC1.1 by the presence of a PCGF2/4, rather than a PCGF1 protein (57). This may suggest that non-canonical PRC1 complexes can switch PCGF components over evolutionary time or it may be a specific case caused by the loss of PCGF diversity in the lineage leading to Drosophila. A recent report has found that the Drosophila PCGF3 homolog, L(3)37Ah, interacts with dRING and is required for the majority of H2Ak118 ubiquitylation (58). The single PCGF gene in C. elegans also falls into the PCGF3 family, albeit without high support. It is interesting to note that the PCGF3 family seems to be the group which has been lost less often than any of the other PCGF families, being retained in all genomes that we analyzed other than hydrozoan cnidarians. The reason for this and its relevance to our understanding of PRC1 evolution will only become clear upon further investigation of PCGF3 function in a more diverse set of organisms.

Our finding that anthozoan cnidarians contain the same set of PCGF gene families as vertebrates does not support the hypothesis that the diversification of PRC1 complexes is related to the evolution of vertebrate-specific traits (56, 61). The presence of the different PCGF families in anhzoans provides the opportunity to obtain new insights into the evolution of PRC1 complexes both at the molecular and organismal levels. For example, PSc, the Drosophila PCGF2/4, has the ability to compact chromatin due to the presence of a repressive C-terminal region. This property can be found in PCGF2/4 proteins from many species, including several invertebrates (82). In vertebrates and plants, however, two unrelated PRC1 subunits, CBX2 and EMF1, respectively, have the same molecular function (11, 82). Thus, it remains ambiguous whether ancestral PCGF proteins had this function or whether it evolved independently in different lineages. Understanding the biochemical activities of PRC1 members from early diverging animal lineages could potentially resolve this. At the organismal level, we see that the PCGF genes in Nematostella are dynamically and differentially expressed during development. This may indicate that these genes play distinct roles at different developmental stages and/or in different tissues or cell types. It will be interesting in the future to dissect these roles to understand whether the molecular and physiological roles of these genes are conserved in different species. Of the two PCGF5 paralogs in Nematostella, NvPCGF5a is highly expressed in the nervous system based on our analysis. In addition, both Nematostella NvPCGF5a and NvPCGF5b are found to be up-regulated in NvElav1+ neurons at later developmental stages (83). This is striking as, in mice, PCGF5 is also highly expressed in neural progenitors (56, 74) and has been
shown to play important roles both during neural differentiation and in the adult nervous system (55, 56). This could suggest an ancestral and conserved function of this gene in the nervous system. A comparably well-developed experimental tool set, including stable transgens, genome editing, and transient knockdown approaches, is available for *Nematostella* (69, 84–87), allowing further investigations on the function and interaction partners of the *Nematostella* PCGF5 proteins that may help to unravel potential functional conservation.

Our analysis failed to resolve the placement of PCGF family genes from other early-branching non-bilaterian lineages (ctenophores, sponges, and placozoans), making their evolutionary history unclear. From our analysis, we can confidently say that there were at least five PCGF proteins in the last common ancestor of cnidarians and bilaterians. Whether canonical and non-canonical PRC1 complexes evolved at the same evolutionary stage, or whether one evolved earlier than the other, also remains unclear. The presence of a putative RYBP and the absence of either CBX of PHC homologs in choanoflagellates would favor a hypothesis in which non-canonical PRC1 evolved prior to canonical PRC1 (1). Given the divergent sequence and domain composition of the putative choanoflagellate *S. rosetta* RYBP, we consider it important to validate its potential function as a component of a PRC1 complex experimentally before confidently calling it an RYBP.

In conclusion, we have shown that the PCGF family expanded early in animal evolution, before the split of bilaterians and cnidarians. This suggests that the diversity of PRC1 complexes seen in vertebrates may have arisen early in animal evolution. The extensive losses of PCGF genes in the major invertebrate model systems places anthozoan cnidarians, particularly *Nematostella*, as the technologically most advanced model in which this complexity and its contribution to gene regulatory programs can be studied outside vertebrates.

Materials and Methods

Homology Search. To identify homologs of the genes studied here we used tBLASTn searches with the following as query: For PCGF genes we used *D. melanogaster* Psc, for RING1/2 we used dRING, for CBX genes we used *D. melanogaster* Pcx, for PHC we used *D. melanogaster* Ph, and for RYBP we used human RYBP. In any case where we could not find any homologs we also used sequences from more closely related groups as a query to confirm. For the majority of species we used the National Center for Biotechnology Information (NCBI) database. For *M. leidyi* we used the National Human Genome Research Institute (NHGRI) Mmениоmисіїв лейдіїн геном portal (http://research.nhgri.nih.gov/mmениоmисіїв), for *S. mediterranea* we used the *Schmiatia mediterranea* genome database (http://hmmdgl.neuro.utah.edu), for *C. teleta* we used the Joint Genome Institute (JGI) [https://myccosm.jgi.doe.gov/Capca1/Capca1.home.html], for *Hydractinia* echinata sequences were obtained by tblastn into the transcriptome (https://research.nhgri.nih.gov/mmениоmисіїв) and for *A. aurita* and *M. virulenta* we used the https://marinigenomics.oist.jp/ website. Genes were designated as orthologs using BLASTp searches with both human and *D. melanogaster* sequences in the NCBI nr database as well as by analyzing domain composition using Pfam. In a few cases the genes were obviously incomplete (i.e., very short or missing a domain) and in these cases we extracted the genomic region and performed a de novo annotation to extend the gene models using Augustus (http://bioinf.uni-greifswald.de/augustus/submission). We used the nomenclature as follows: If a gene had already been assigned a name then this was used and the species identifier was added in front. If genes were not already named, we named them with the protein name, i.e., PCGF, RING, or CBX, preceded by the species identifier and followed by a unique letter (a, b, etc.).

Cloning of Nematostella PCGF Genes. Nematostella PCGF genes were identified as above using the JGI genome browser (http://genome.jgi.doe.gov/Nemve1/Nemve1.home.html) and cloned using standard procedure into pCR4 backbones. In the case of *NvPCGF5a* the sequence was obtained from the *Nematostella vectensis* Embryogenesis and Regeneration Transcriptomics (NvERTx) database (70).

Phylogenetic Analysis. A full list of genes used for phylogenetic analysis can be found in Dataset File S1. For the PCGF phylogenies, the full-length protein-coding sequences were aligned using MUSCLE v3.8.31 (88). All alignment files can be found as Dataset Files S2–S9. ProtTest3 (89), which calls PhyML for estimating model parameters (90), was used to select the best-fit model of protein evolution for each alignment. The best-fit model for the Cnidaria plus Bilateria PCGF and RING1/2 alignment (SI Appendix, Fig. S2) was VT + I + F, where “VT” indicates the substitution matrix, “I” specifies a proportion of invariant sites, “F” specifies gamma-distributed rates across sites, and “VT + I + F” specifies empirical amino acid frequencies in the dataset. The best model for the full taxon set PCGF and RING1/2 alignment (SI Appendix, Fig. S3) was WAG + I + F, where “WAG” indicates the substitution matrix. The best model for the full taxon set PCGF-only alignment (SI Appendix, Fig. S5) was WAG + I + F. The best model for the cnidarian-only alignment was WAG + F + F. Maximum likelihood analyses were performed with RAxML v8.2.9 (91). For each phylogeny, we conducted two independent searches each with a total of 100 randomized maximum parsimony starting trees; we then compared the likelihood values among all result trees and chose the best tree from among these. One hundred bootstrapped trees were computed and applied to the best result tree for each analysis. Bayesian analyses were performed with MrBayes3.2.5 × 64 (92) and the same best fit model of protein evolution from ProtTest3 as described above for each set. Two independent 5 million generation runs of five chains each were run, with trees sampled every 100 generations. The final “average SD of split frequencies” between the two runs was below 0.005 for each phylogenetic tree. This diagnostic value should approach zero as the two runs converge and an average SD value between 0.01 and 0.05 is considered acceptable for convergence. In each case, a majority rule consensus tree was produced, and posterior probabilities were calculated from this consensus. Trees were rooted in FigTree v1.3.1 (FigTree, a graphical viewer of phylogenetic treeshttp://tree.bio.ed.ac.uk/software/figtree). Bayesian posterior probabilities are shown on the Bayesian trees (Fig. 2 and SI Appendix, Figs. 53, 55, and 57).

Identification and Annotation of PCGF Cluster. The scaffolds containing the PCGF cluster are as follows: A. pallida, NW_018352381.1; A. digitifera, NW_015441081.1; and *N. vectensis*, NW_001834266. The genes upstream and downstream of the PCGF genes were identified based on the most similar human sequences retrieved by reciprocal BLASTp searches in the NCBI nr database. We then used a reciprocal blast approach between the species and identified that in each case the gene within the cluster represent each other’s most similar gene in the other species.

Nematostella Maintenance. *Nematostella* were maintained at 18 to 19 °C in 1/3 filtered sea water (*Nematostella* media [NM]) and spawned as described previously (93). Fertilized eggs were removed from their jelly packages by incubating in 3% cysteine in NM for 20 min followed by extensive washing in PBT. Embryos were reared at 21 °C and were fixed at 16 h (blastula), 20 h (gastrula), 30 h (late gastrula), 48 h (early planula), and 72 h (late planula) postfertilization.

Generation of the *NvPCGF5a:eGFP Transgenic Reporter. We amplified ~5.3 kb upstream of the *NvPCGF5* coding sequence including the first two introns and 138 bp of coding sequence using primers: CACCCGGCAACATGAAGACTTC. *NvPCGF5a* was cloned into an eGFP vector by transforming the *N. vectensis* NCBI P1 marker sequence in a pUC57 backbone as previously used (83), using NEB-bUILDER HiFi Mastermix (NEB, EN2621D). Transgenic animals were generated using meganuclease-mediated transgenesis as previously described (84).

Fixation, In Situ Hybridization, and Immunofluorescence. Animals were fixed in ice-cold 0.2% glutaraldehyde/3.7% formaldehyde in NM for 1.5 min followed by 1 h at 4 °C in 3.7% formaldehyde in PBT (phosphate buffered saline [PBS] + 0.1% Tween). Animals were washed several times in PBT and those used for in situ hybridization were dehydrated through a series of methanol washes and stored in 100% methanol at −20 °C. In situ hybridization and immunofluorescence were performed as previously described (77) with the replacement of the DAPI incubation with a 1-h incubation in Hoechst 33342 (Thermo Fisher Scientific, 62249) at 1:100 for >1 h. Antibodies used were: anti-dsRed (Clontech, 632496) 1:200, mouse anti-mCherry (Clontech, 632549) 1:200, rabbit anti-GFP (Abcam, Ab1218) 1:100, rabbit anti-RFP (Abcam, Ab290) 1:100, goat anti-rabbit Alexa 488 (Life Technologies, A11008) 1:200, goat anti-rabbit Alexa 568 (Life Technologies, A11011) 1:200, goat anti-mouse Alexa 488 (Life Technologies, A11001) 1:200, and goat anti-mouse Alexa 568 (Life Technologies, A11004) 1:200. Samples were then
ACKNOWLEDGMENTS. We thank members of the F.R. laboratory for discussions and support, and Océane Tournière for critical reading of the manuscript. Research in F.R.’s laboratory was funded by a grant from the University of Bergen and the Research Council of Norway (251185/F20), and by the Sars Centre for Marine Molecular Biology core budget. C.E.S. was supported by University of Florida start-up funding.

40. R. Wang et al., Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 18, 966–975 (2010).
42. N. R. Rose et al., RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repression complexes. eLife 5, e18591 (2016).

Gahan et al.