Adversarial vulnerabilities of human decision-making

Amir Dezfouli, Richard Nock, and Peter Dayan

Adversarial examples are carefully crafted input patterns that are surprisingly poorly classified by artificial and/or natural neural networks. Here we examine adversarial vulnerabilities in the processes responsible for learning and choice in humans. Building upon recent recurrent neural network models of choice processes, we propose a general framework for generating adversarial opponents that can shape the choices of individuals in particular decision-making tasks toward the behavioral patterns desired by the adversary. We show the efficacy of the framework through three experiments involving action selection, response inhibition, and social decision-making. We further investigate the strategy used by the adversary in order to gain insights into the vulnerabilities of human choice. The framework may find applications across behavioral sciences in helping detect and avoid flawed choice.

Significance

"What I cannot efficiently break, I cannot understand." Understanding the vulnerabilities of human choice processes allows us to detect and potentially avoid adversarial attacks. We develop a general framework for creating adversaries for human decision-making. The framework is based on recent developments in deep reinforcement learning models and recurrent neural networks and can in principle be applied to any decision-making task and adversarial objective. We show the performance of the framework in three tasks involving choice, response inhibition, and social decision-making. In all of the cases the framework was successful in its adversarial attack. Furthermore, we show various ways to interpret the models to provide insights into the exploitability of human choice.

Author contributions: A.D., R.N., and P.D. designed research; A.D. and P.D. performed research; A.D. analyzed data; and A.D., R.N., and P.D. wrote the paper. The authors declare no competing interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: amir.dezfouli@data61.csiro.au.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016921117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2016921117

PNAS Latest Articles | 1 of 8
We modeled the adversary using an RL agent. On each trial, the adversary receives the learning history of the subject as input and produces as output the learner reward and the next observation to be delivered to the subject. In RL terms, the learning history of the subjects constitutes the state of the adversary, and its output are the adversarial choices *, which determine the learner reward and the observation inputs for the subjects. The immediate reward provided to the adversary to criticize its adversarial choices (we call this the adversarial reward) reflects whether its output made the subjects meet the target behavior or goals. Within this structure, the adversary is trained to earn the maximum-sum adversarial reward over the whole task, corresponding to producing outputs which most effectively push the subjects toward target actions or goals.

In principle, the adversary could be trained through direct interactions with humans. In practice, however, this approach is unfeasible given the delays involved with interacting with humans and the large number of training samples required. Instead, we use an alternative, model-based approach based on recent RNN models of human choice processes in detail. Our approach has two additional advantages over training the adversary against humans. First, it can be carried out in settings where substantial training data (nonadversarial) already exist; second, our approach comes at the reduced human cost of just modeling the human behavior for the nonadversarial task. Provided the effect of covariate shift is not too severe, this can then be used as input for diverse adversarial training scenarios.

Learner Model. In detail, the learner model (Fig. 1B) determined by parameters Θ comprises an RNN and a softmax layer which maps the RNN internal state to a probability of selecting each action (4). On trial t for subject n, the RNN layer has an internal state denoted by vector \(x_t^n \), which reflects the RNN’s inputs on trials 1 . . . t − 2. This state is recurrently updated based on the previous action (\(a_{t-1}^n \)) and learner reward (\(r_{t-1}^n \)) and the current observations (\(o_t^n \)). The output of the RNN layer, \(x_t^n \), is passed to a softmax layer to predict the next action (i.e., \(\pi_t^n(\cdot) \)). The prediction is compared with the subject’s actual action \(a_t^n \), resulting in loss \(\mathcal{L}(\Theta) \) that is used for training the network. See Materials and Methods for more details.

Training the Adversary. The adversary is modeled as an agent whose adversarial choices are learner rewards and observations on each trial, emitted with the goal of optimizing target behaviors subject to constraints. Since the adversarial choice on one trial can affect all of the subsequent actions of the learner model (hopefully characterizing similar dependence in the subjects), the adversary faces a sequential decision-making problem, which we address in an RL framework (Fig. 1C).

The future actions of the learner model after trial t depend on its prior history only through its internal state \(x_t^m \) (for simulated learner m). Therefore, the RL adversary uses \(x_t^m \) as the state of the environment to decide the learner reward \(r_t^m \) and next observation \(o_{t+1}^m \) that it provides to the learner model. The process repeats with the new state of the learner model (\(x_{t+1}^n \)) being passed to the adversary. Within this structure, the policy of the adversary in choosing learner rewards and observations is trained to yield maximum cumulative adversarial reward subject

*For clarity, we refer throughout to decisions in the task as actions and the output of the adversary as adversarial choices.
to constraints. We used the advantage actor–critic method (A2C) (10) and deep Q-learning (DQN) (11) for training the adversary. Note that the learner model is not trained in this stage and its weights are frozen. See Materials and Methods for more details on training and the constraints.

Along with this closed-loop adversary, which is guided by the past actions of the subject (via the internal state of the learner model), we also consider an open-loop adversary. This chooses learner rewards and observations without receiving the subject’s actions or the internal state of the learner model. Its policy is trained directly just using samples generated from the learner model.

Using the Adversary. Fig. 1D depicts how the trained closed-loop adversary and the learner model are used in an experiment involving human subjects. The learner model does not choose actions but receives the actions made by subject n as input and tracks their learning history using x_t^n. In turn, on trial t, x_t^n is received by the adversary to determine the learner reward r_t^n and the next observation o_{t+1}^n which the subject will use to choose their next action a_{t+1}^n. The same input, along with the actual action and learner reward, is delivered to the learner model. This cycle continues until the end of the task.

Results

Bandit Task. This experiment is based on the adversarial bandit task introduced in ref. 1. On each trial, subjects make choices between two squares, one on the left of the screen and the other on the right. After each choice, the subjects receive feedback about whether (smiley face) or not (sad face) their action earned a learner reward. A priori, before each choice, the adversary assigns a potential learner reward to both potential actions (e.g., that the left action will be rewarded and the right action will not get rewarded), and this is faithfully delivered ex post based on the subject’s choice. The goal of the adversary is to assign learner rewards to the actions in a way that makes subjects prefer one of the actions (called the “target” action) over the other one (the “nontarget” action). The target action is predefined (e.g., before the experiment starts the left action is set as the target action). The adversary is required to achieve this goal under a constraint: It must assign exactly 25 a priori learner rewards to each action, that is, it cannot simply always assign learner rewards to the target action and no learner reward to the nontarget action.

Q-Learning Model. We first evaluated the framework in the synthetic setting of Q-learning. We generated data from a Q-learning algorithm (1,000 learners) with the same parameters used in ref. 1 and used these data to train the learner model. Then we used RL to train the adversary to exploit the learner model. The adversary received an adversarial reward every time the learner model chose the target action. The constraint was enforced at the task level, that is, after the adversary has allocated 25 learner rewards to an action, no more learner rewards will be allocated to that action. Conversely, if the adversary has only assigned $25-k$ learner rewards to an action by trial $T=k$ (for $k>0$, where T is the maximum trial number), that action will be assigned a learner reward on the remaining k trials.

The trained adversary was evaluated against both the learner model and the Q-learning model. The main dependent variable is the “bias,” which is the percentage of trials on which the target action was chosen (Fig. 2A). As the figure shows, the adversary was able to guide the choices toward the target action. The average bias in playing the Q-learning model was 73.4% (ADV vs. QL column). This is similar to the results obtained in ref. 1, but here the results are obtained without knowing that the underlying algorithm is Q-learning. The average bias when the adversary was simulated against the learner model is 73.8% (ADV vs. LRN column), which is comparable with the results against the actual Q-learner.

Next, we sought to uncover the strategy used by the adversary. Two 100-trial simulations are shown in Fig. 3A (ADV vs. Q-learning). The blue and red circles indicate that the learner model selected the target and nontarget action respectively. The vertical blue and red lines indicate that a learner reward was assigned to the target and nontarget actions respectively. No line indicates that the learner reward was not assigned to the corresponding action. The green shaded area shows the probability the learner model awards to the target action. The general tactic used by the adversary is to assign a few learner rewards to the target action in the first half of the task; these few learner rewards, however, were sufficient to keep the probability of choosing the target action around 70 to 80% (shown by the green area), which is because the adversary never delivered nontarget learner rewards in this period. Toward the end of the task, the adversary “burns” the nontarget learner rewards whenever the probability of the target action is above chance; at the same time the density of target learner rewards is increased to cancel the effect of nontarget learner rewards. The combination of these strategies made the learner model choose the target action around 73% of the trials.

Human Subjects. We next applied the framework to develop an adversary for human choices in the task. The learner model was trained using the (nonadversarial) data published in ref. 1 for $N=484$ subjects.

The trained adversary and the learner model were used to collect data from humans using Amazon Mechanical Turk ($N=157$). The results are shown in Fig. 2B. The bar “ADV vs SBJ” shows the bias of subjects when playing against the adversary. The average bias was 70%, which is significantly higher than the equal selection of actions that might naively be implied by the equal numbers of learner rewards available for each choice (50% bias baseline: Wilcoxon signed-rank test, $P<0.001$). This shows that the adversary was successful in leading subjects to choose the target action. The Fig. 2B bar “ADV vs LRN” shows the bias when the adversary is playing against the learner model (simulated). The average bias is 76.4%, which is better than when the adversary is pitted against human subjects. One potential difference is the subject populations used to train vs. test the adversary.

To investigate the adversary’s strategy, we again simulated it, but now against the human-trained learner model (Fig. 3B). The adversary appears to seek to prevent subjects from experiencing the learner rewards assigned to the nontarget action, but to...
make them see the learner rewards assigned to the target action, and therefore to select it. To achieve this, learner rewards are assigned to the target actions when this action is likely to get selected in the next trial, but for the nontarget action, learner rewards are assigned when this action is unlikely to get selected.

Some of the tactics the adversary employs are evident in these simulations. In in Fig. 3B, Top the adversary starts by continuously assigning learner rewards to the target action. Once the subject was set on choosing the target action, learner rewards are assigned to the nontarget action to “burn” them without subjects noticing. A second tactic is using partial reinforcement after the initial serial learner reward delivery on the target action (shown by the dashed horizontal line above the panel). This saves target learner rewards for later while not materially affecting choice probabilities. A third tactic is applied when the learner model takes a nontarget action, as shown by the vertical arrow on the panel; here, the adversary briefly increases target learner reward density to bring the subject back to choosing the target action.

The second simulation (Fig. 3B, Bottom) shows a more complex strategy which allows the adversary to burn the nontarget rewards “discreetly” for a learner model that has a tendency to alternate. In the period indicated by the horizontal dashed arrow, when the learner model tries the nontarget action (the red circle) without getting reward, on the next trial it tends to take the target action (blue circle). This pattern of behavior is detected by the adversary and exploited by assigning a learner reward to each nontarget action after each selection of the nontarget action. This efficiently hides nontarget learner rewards from the subjects. Altogether, such tactics substantially bias the subjects toward the target action.

Across the two experiments, it is evident that the strategy used against humans is quite different from the strategy used against Q-learning. Indeed, if we apply the adversary adapted to the humans to a Q-learning learner, the average bias is 55.2 and if we apply the adversary developed for Q-learning to humans (on a learner model trained using human data) the average bias is 58.1 (SI Appendix, Fig. S1). These differ markedly from the biases reported when the adversaries play against their corresponding learner models.

Go/No-Go Task. Our second experiment involved a go/no-go task that was implemented in ref. 8. On each of 350 trials, subjects see either a go stimulus (e.g., an orange circle) or a no-go stimulus (e.g., a blue triangle). Go stimuli are common (90% of trials) and subjects are required to press the space bar in response to them. No-go stimuli are rare and require subjects to withhold responding. In the nonadversarial case, no-go stimuli are uniformly distributed across trials. By contrast, the adversary rearranges the no-go stimuli to encourage the largest number of mistakes (i.e., pressing space bar to no-go stimuli, or withholding responding to go stimuli), without changing the total number of each stimulus type. Similar to the previous experiment, the constraint (exactly 90% of trials should be no-go) is enforced by fiat at the task level.

There are two differences between this experiment and the bandit experiments. First, the adversary determines observations (go vs. no-go) rather than learner rewards. Second, we considered an open-loop adversary—that is, one that did not receive the state information \(\mathbf{x}_t^a \) on trial \(t \) and indeed knew nothing about how a particular subject responded.
We started by training the learner model using the data generated in the random case ($N = 770$ subjects collected using Amazon Mechanical Turk were included in the analysis). Next, we trained the adversary using the learner model, but unlike the previous experiment the adversary did not receive the state of the learner model. The trained adversary was then used to collect data from humans using Amazon Mechanical Turk ($N = 139$). The results are shown in Fig. 4A. Subjects on average made 11.7 errors when playing against the adversary and 9.5 errors when no-go trials are distributed randomly (Wilcoxon rank-sum test; $P < 0.001$). Therefore, the adversary was successful in finding a state distribution which induces extra errors. The number of excess errors may seem modest, but the task is extremely austere, and so any significant change is an achievement.

To elucidate the adversary’s strategy, Fig. 4B shows the ratio of go trials allocated by the adversary across the task. The adversary allocates more no-go trials toward the end of the task. This may be since subjects (in the training data in which the no-go trials were randomly distributed) were more likely to make errors in the no-go condition later in the task (Fig. 4C). However, the adversary faces a challenging problem, since assigning all of the no-go trials in a short period will likely induce more errors. The probability of making an error in the no-go condition increases over trials; thus, the adversary spread the no-go trials across the task with a bias toward the end of the task to induce more errors.

Multiround Trust Task. In the third experiment we evaluated our framework on the multiround trust task (MRTT). MRTT is a social exchange task for two players, whose roles are called “investor” and “trustee” (9, 12). The task involves 10 sequential rounds. In each round the investor receives an initial endowment of 20 monetary units. The investor can share a portion (or all) of this endowment. The shared amount is tripled by the experimenter and sent to the trustee. Then, the trustee can send back any portion of this amount to the investor, hereafter called repayments. The total amount earned by each player in the task is the sum of what they earned in each round.

In our framework humans play the role of the investor and the adversary plays the role of the trustee. The actions of the adversary correspond to the proportions that the investor sends back to the trustee (discretized to five actions corresponding to 0, 25, 50, 75, and 100% repayments). The goal of the adversary is to make repayment choices that persuade the investor to make payments that meet adversarial objectives. We trained two adversaries based on two different objectives: 1) a MAX objective, in which the aim of the adversary is to gain the most over the 10 rounds, and 2) a FAIR objective, in which the aim of the adversary is to balance the total earnings of the trustee and investor over the whole task. Comparing the two objectives shows the extent to which the adversary can adapt to the problem is faces; the FAIR objective allows us to evaluate the framework on motivating humans to make cooperative rather than competitive adversarial choices.

Note that the pattern of play can be substantially influenced by the number of remaining rounds (for instance, a MAX-trained trustee has no incentive to repay anything on the last round; the prospect of this noncooperation can make investors cautious) (13). This induces dependencies across rounds, making the task a sequential decision-making problem. This is a significant difference from the bandit setting of the first experiment.

We first collected data on a random investor (RND condition, that is, the investor selects action uniformly at random) using Amazon Mechanical Turk ($n = 232$). Fig. 4d shows the effect of the repayment amount on the investment by the subjects in the next round (marginalizing over the round number). Subjects generally invested more if a higher portion had been repaid to them in the previous trial. This implies that in the case of...
of MAX objective the adversary should aim to increase future investments by making high repayments and building trust, but it also needs to share as little as possible to profit from the investments it receives. This is a nontrivial decision-making problem for the adversary.

We used the data collected in the random condition to train the learner model and used this learner model to train two adversaries based on the above objectives. Each adversary was tested on the data collected using Amazon Mechanical Turk ($n = 155$ for FAIR adversary and $n = 209$ for MAX adversary). Fig. 5B shows the performance of the adversaries tested on subjects and also their performance in simulations using the learner model. As the figure shows, the gains of the MAX adversary are significantly higher than the RND investor and FAIR adversaries (Wilcoxon signed-rank test, $P < 0.001$). On the other hand, the absolute earning gap (i.e., the absolute difference between the earning of the trustee and the investor over the whole task) is lower for the FAIR adversary than for both RND and MAX adversaries (Wilcoxon signed-rank test, $P < 0.001$). Therefore, the adversaries were successful in guiding subjects’ actions toward their objectives. The performance of the adversaries tested on the subjects is slightly worse than the performance on the simulations against the learner model, which might partly be due to the differences in subjects’ pools used for training the learner models and testing the adversaries.

Fig. 5C shows the percentage of repayments and investments in each round. As expected, the FAIR adversary repays more (Fig. 5C, Top), which makes the subjects increase their repayments over the rounds (Fig. 5C, Bottom). The MAX adversary repays less, and, again as expected, repays nothing in the last round.

Fig. 5D shows the adversary strategy in more details and as a function of the investments. The MAX adversary starts with high repayments to gain the investors’ trust but then sharply decreases the repayments to exploit their cooperativity. This pattern depends on the investment amount: If the investment is very low (20%), in the early trials the adversary tries to persuade the subjects to increase their investment by making large repayments (up to 75%). This strategy is different from the FAIR adversary: In this case if the investment is around 50% (10 units), the adversary returns around 30%, which makes each player earn 20 units. With investments less than 5, no matter what action the adversary takes there will be a gap between the earnings. As such, similar to the MAX case the adversary aims to build trust by making high payments in early rounds but later on the repayments become proportional to the investments. Note that the adversary is not making repayments to balance the gains at each round independently, in which case its strategy should be same in all of the rounds, but it is adjusting repayments to guide the investors’ actions to high values so that the gains can be balanced with appropriate repayments.

Discussion

We have provided a general framework for generating adversaries to elicit target behavior in a wide variety of human decision-making processes. In three experiments, we showed that the framework is effective in inducing target behaviors and also interpretable using simulations. We also showed that the framework can be used in settings that the target behavior is nonadversarial, such as inducing fairness in two-player games.

Cognitive Biases. The strategies used by the adversaries are driven by the choice characteristics embedded in the structure and weights of the learner model. Such choice characteristics, when exploited by the adversary, can lead to irrational and suboptimal actions by the learner model. In this respect, they can be seen as distilled, implicit generalizations of the traditional cognitive biases which underlie different sorts of deviations from normative accounts of choice (14). Exploring the relationship between adversarial strategies and traditional cognitive biases is a direction for future research.

Batch RL. An alternative to the framework developed here is using batch RL algorithms, which are able to learn from a precollected dataset without interacting with the environment (15).
There would then be a parallel with the learning to reinforcement learn (16) or RL² (17) frameworks. One advantage of the current approach over these methods is that the policy of the adversary can be interpreted with respect to the behavior of the learner model which has been used to train it.

Experiment Design. Although we considered one-step adversarial scenarios, in principle the same framework can be used for multi-step experimental design (see also ref. 18). Say, for example, that an experimenter desires the subjects to exhibit a specific pattern of behavior, but the experimental parameters (e.g., probabilities, delays, etc.) that yield the pattern are unknown. Following the framework here, the experimenter can train a learner model and use that learner model to train an open-loop adversary which determines the optimal set of parameters for obtaining the desired behavior. The obtained parameters then can be tested to see whether they make the subjects exhibit the desired behavior; if they did not, the learner model can be retrained using the new dataset and this process can be iterated until the desired behavior is obtained. We conjecture that the procedure will often converge.

One reason that the subjects might not exhibit the desired behavior in early iterations of this procedure is that the method depends on the generalization of the predictions of the learner model from nonadversarial regimes to the adversarial regimes. The violation of this assumption implies that the adversary pushes the learner model in the parts of the state-space which have not been visited in the nonadversarial training and therefore the approximations of the human behavior in those regions will be poor. This covariate shift phenomenon is known as “extrapolation error” in the batch reinforcement learning literature (19) and several solutions have been suggested (see also ref. 20 for batch supervised learning), which can be applied to the current framework. Here, we used RNNs with a relatively small number of cells to avoid this issue, but the extension of the framework to address extrapolation error can be an interesting future step.

Materials and Methods

Training the Learner Model. The learner model was trained using the objective function $C(\theta) = -\sum_{s,t} \log \pi_a(s|\theta)$, where $\pi_a(s|\theta)$ is the policy vector (probability of taking each action by the learner model), the action taken by the investor (learner model), and the trial (round) number. The output of the network was the action values of each of the five actions corresponding to different proportions of repayments. In the case of the MAX adversary, the reward delivered to the adversary in each round was the amount earned ($3 \times$ investment – repayment). In the case of FAIR adversary, the reward in each round was zero except for the last round in which the reward was the negative absolute difference between the gains of trustee and investor over the whole task.

The adversaries were reverse engineered from networks with three fully connected layers with 128, 128, and 4 units, with ReLU, ReLU, and linear activation functions. Replay buffer sizes of 200,000 and 400,000 were considered. The ϵ–greedy method was used for exploration with $\epsilon \in \{0.01, 0.1, 0.2\}$. Learning rates $\{10^{-2}, 10^{-4}, 10^{-5}\}$ were considered for training the adversary using the Adam optimizer. These performance of these 18 combinations was evaluated after $\{1, 2, 3, 4, 5, 6, 7, 8, 9\} \times 10^3$ training iterations. For the performance evaluation, the adversary was simulated against the learner model 2,000 times and the average bias was calculated. The adversary with the highest average bias was used. For the humans/Q-learning experiments, the highest bias was achieved with buffer size 400,000/400,000, $\epsilon = 0.1/0.01$, and learning rate 0.0001/0.001.

For the go/no-go experiment, since the task was longer (350 trials) we used a policy-gradient method and advantage A2C algorithm (10) for training the open-loop adversary. We also used an additional entropy term to encourage sufficient exploration (24). The input to the adversary was the current trial number and the total number of go/no-go states assigned. The output of the adversary was the policy (i.e., the probability that the next trial is go or no-go). Note that the policy is stochastic. The network did not receive the learner model’s internal state as input since we sought an open-loop adversary. Both the value and policy networks for the adversary had three layers, with 256, 256, and 1 unit(s) in the value layer and 256, 256, and 2 units in the policy layer. The activation functions were ReLU, ReLU, and linear, respectively, in each layer. We considered two values for the weight of entropy $\{0.01, 0.5\}$ and the adversary with 0.01 entropy weight achieved a higher performance against the learner model (in terms of the average number of errors made by the learner model in 1,500 simulation). The adversaries were implemented in Tensorflow and trained using the Adam optimization method (21).

For the MRTT experiment, we used DQN as for the bandit experiment. The inputs to the adversary were the internal state of the learner model (π_θ), its policy vector (probability of taking each action by the learner model), the action taken by the investor (learner model), and the trial (round) number. The output of the network was the action values of each of the five actions (i.e., $\pi_a(s|\theta)$).

Data Collection. The study was approved by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) ethics committee (Ethics Clearance 102/19). Subjects agreed to an online consent form prior to each task. The data were collected using Amazon Mechanical Turk. In all experiments, the participants received $\$0.4$. In the bandit task, they also could earn $\$0.01$ for each smiley face. In MRTT subjects were paid $\$3$ for their participation in the study. The data were collected using Amazon Mechanical Turk.

Training the Adversary. The DQN algorithm was used for training the adversary in the bandit experiments (11). The inputs to the closed-loop adversary were the internal state of the learner model (π_θ, its policy vector (probability of taking each action by the learner model), the trial number, and the number of rewards so far assigned to each action. Note that the internal state of the learner model embeds other elements such as policy vector, but we also fed these elements explicitly to the adversary to speed up training. The output of the adversary was the value of each of the four actions corresponding to the combination of assigning reward/no-reward to each of the choices available to the learner model.

The adversary neural network had three fully connected layers with 128, 128, and 4 units, with ReLU, ReLU, and linear activation functions. Replay buffer sizes of 200,000 and 400,000 were considered. The ϵ–greedy method was used for exploration with $\epsilon \in \{0.01, 0.1, 0.2\}$. Learning rates $\{10^{-2}, 10^{-4}, 10^{-5}\}$ were considered for training the adversary using the Adam optimizer. These performance of these 18 combinations was evaluated after $\{1, 2, 3, 4, 5, 6, 7, 8, 9\} \times 10^3$ training iterations. For the performance evaluation, the adversary was simulated against the learner model 2,000 times and the average bias was calculated. The adversary with the highest average bias was used. For the humans/Q-learning experiments, the highest bias was achieved with buffer size 400,000/400,000, $\epsilon = 0.1/0.01$, and learning rate 0.0001/0.001.

For the go/no-go experiment, since the task was longer (350 trials) we used a policy-gradient method and advantage A2C algorithm (10) for training the open-loop adversary. We also used an additional entropy term to encourage sufficient exploration (24). The input to the adversary was the current trial number and the total number of go/no-go states assigned. The output of the adversary was the policy (i.e., the probability that the next trial is go or no-go). Note that the policy is stochastic. The network did not receive the learner model’s internal state as input since we sought an open-loop adversary. Both the value and policy networks for the adversary had three layers, with 256, 256, and 1 unit(s) in the value layer and 256, 256, and 2 units in the policy layer. The activation functions were ReLU, ReLU, and linear, respectively, in each layer. We considered two values for the weight of entropy $\{0.01, 0.5\}$ and the adversary with 0.01 entropy weight achieved a higher performance against the learner model (in terms of the average number of errors made by the learner model in 1,500 simulation). The adversaries were implemented in Tensorflow and trained using the Adam optimization method (21).

For the MRTT experiment, we used DQN as for the bandit experiment. The inputs to the adversary were the internal state of the learner model (π_θ), its policy vector (probability of taking each action by the learner model), the action taken by the investor (learner model), and the trial (round) number. The output of the network was the action values of each of the five actions (i.e., $\pi_a(s|\theta)$).

Data Collection. The study was approved by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) ethics committee (Ethics Clearance 102/19). Subjects agreed to an online consent form prior to each task for their participation in the study. The data were collected using Amazon Mechanical Turk. In all experiments, the participants received $\$0.4$. In the bandit task, they also could earn $\$0.01$ for each smiley face. In MRTT subjects were paid $\$3$ for their participation in the study. The data were collected using Amazon Mechanical Turk.

Training the Adversary. The DQN algorithm was used for training the adversary in the bandit experiments (11). The inputs to the closed-loop adversary were the internal state of the learner model (π_θ, its policy vector (probability of taking each action by the learner model), the trial number, and the number of rewards so far assigned to each action. Note that the internal state of the learner model embeds other elements such as policy vector, but we also fed these elements explicitly to the adversary to speed up training. The output of the adversary was the value of each of the four actions corresponding to the combination of assigning reward/no-reward to each of the choices available to the learner model.

The adversary neural network had three fully connected layers with 128, 128, and 4 units, with ReLU, ReLU, and linear activation functions. Replay buffer sizes of 200,000 and 400,000 were considered. The ϵ–greedy method was used for exploration with $\epsilon \in \{0.01, 0.1, 0.2\}$. Learning rates $\{10^{-2}, 10^{-4}, 10^{-5}\}$ were considered for training the adversary using the Adam optimizer. These performance of these 18 combinations was evaluated after $\{1, 2, 3, 4, 5, 6, 7, 8, 9\} \times 10^3$ training iterations. For the performance evaluation, the adversary was simulated against the learner model 2,000 times and the average bias was calculated. The adversary with the highest average bias was used. For the humans/Q-learning experiments, the highest bias was achieved with buffer size 400,000/400,000, $\epsilon = 0.1/0.01$, and learning rate 0.0001/0.001.