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This appendix contains omitted proofs. Before we prove Theorem 1 we prove
Proposition 1 and then state and prove a simple consequence of Chernoff’s in-
equality. Both results are needed in the proof of Theorem 1.

Proof of Proposition 1. The assumption that π(p)/
∏K

i=1 p
αi−1
i is uniformly con-

tinuous on int ∆ implies that the function has a continuous extension π̃ : ∆→ R,
see [1], Theorem 5.2, page 302. Let π̃0 = min{π̃(p) : p ∈ ∆}. Then π̃0 > 0. Given
ε > 0, choose δ ∈ (0, π̃0) so small that

(12)
1 + δ

π̃0

1− δ
π̃0

≤ 1 + ε.

To approximate the integrals in the assertion by sums of Dirichlet integrals we
use the fact that the continuous function π̃ can be uniformly approximated by
Bernstein polynomials, see [2], pages 6 and 51. Thus, there is a polynomial

h(p) =
∑

ν1,...,νK≥0
ν1+···+νK=m

cν

K∏
i=1

pνii , cν = π̃
(ν1

m
, . . . ,

νK
m

) m!

ν1! · · · νK !
,

so that
|π̃(p)− h(p)| ≤ δ, p ∈ ∆.

Using the formula∫ K∏
i=1

psi−1
i dλ(p) =

∏K
i=1 Γ(si)

Γ(
∑K

i=1 si)
, s1, . . . , sK > 0,

and the relation Γ(s+ 1) = sΓ(s), we get∫
pk

(∏K
i=1 p

si−1
i

)
h(p) dλ(p)∫ (∏K

i=1 p
si−1
i

)
h(p) dλ(p)

=
1

m+
∑K

i=1 si

∑
ν cν(νk + sk)

∏K
i=1 Γ(νi + si)∑

ν cν
∏K

i=1 Γ(νi + si)
.

Since cν > 0 for every ν, it follows that

(13)
sk

m+
∑K

i=1 si
≤

∫
pk

(∏K
i=1 p

si−1
i

)
h(p) dλ(p)∫ (∏K

i=1 p
si−1
i

)
h(p) dλ(p)

≤ m+ sk

m+
∑K

i=1 si
.

For all p ∈ ∆, h(p) ≥ π̃0, and so |π̃(p)− h(p)| ≤ δ ≤ δ
π̃0
h(p). Thus,(

1− δ

π̃0

)
h(p) ≤ π̃(p) ≤

(
1 +

δ

π̃0

)
h(p).
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It follows from these inequalities together with (12) and (13) that for n, n1, . . . , nK ∈
N0 with

∑K
i=1 ni = n,∫

pk

(∏K
i=1 p

ni
i

)
π(p) dλ(p)∫ (∏K

i=1 p
ni
i

)
π(p) dλ(p)

=

∫
pk

(∏K
i=1 p

ni+αi−1
i

)
π̃(p) dλ(p)∫ (∏K

i=1 p
ni+αi−1
i

)
π̃(p) dλ(p)

≤
1 + δ

π̃0

1− δ
π̃0

∫
pk

(∏K
i=1 p

ni+αi−1
i

)
h(p) dλ(p)∫ (∏K

i=1 p
ni+αi−1
i

)
h(p) dλ(p)

≤ (1 + ε)
m+ nk + αk

m+ n+
∑K

i=1 αi
.

Similarly, using the inequality 1/(1 + ε) > 1− ε, we obtain∫
pk

(∏K
i=1 p

ni
i

)
π(p) dλ(p)∫ (∏K

i=1 p
ni
i

)
π(p) dλ(p)

≥
1− δ

π̃0

1 + δ
π̃0

∫
pk

(∏K
i=1 p

ni+αi−1
i

)
h(p) dλ(p)∫ (∏K

i=1 p
ni+αi−1
i

)
h(p) dλ(p)

≥ (1− ε) nk + αk

m+ n+
∑K

i=1 αi
.

The assertion follows with γ = m+
∑K

i=1 αi. �

Remark 3′. Using results on the degree of approximation by Bernstein polyno-
mials, one may compute explicit values for the constant γ in Proposition 1. If, for
example, K = 2 and φ(p1) = π̃(p1, 1 − p1) has a continuous derivative on [0, 1],
one can apply Theorem 1.6.1 in [2] to show that (3) holds with

γ = α1 + α2 +

⌈
5

4

(
1 +

2

ε

)
max{|φ′(p1)| : 0 ≤ p1 ≤ 1}
min{φ(p1) : 0 ≤ p1 ≤ 1}

⌉2

.

If K ≥ 2 and π̃ coincides with a polynomial on ∆, then, by a result of [3], π can
be written as a finite mixture of densities of Dirichlet distributions and Theorem 3
of [4] gives a computable upper bound on the support of the mixing distribution.
Thus, the inequalities in (4) hold with computable constants a and A.

Lemma 3. Let Sn be a binomial random variable with parameters n and p. Let
1 < c < 2 and d > 0. Then

P
(
Sn
n
≥ cp+

d

n

)
≤ e(1−c)d, P

(
Sn
n
≤ p

c
− d

n

)
≤ e(1−c)d.

Proof. By Chernoff’s inequality,

P
(
Sn
n
≥ cp+

d

n

)
≤ inf

t>0

[
e−t(cp+

d
n

)(1− p+ pet)
]n
≤ e(1−c)d[ψ(p)]n,
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where ψ(s) = e(1−c)cs(1− s+ sec−1). For 0 ≤ s ≤ 1,

ψ′(s)

e(1−c)cs = ec−1 − 1− (c− 1)c− s(c− 1)c(ec−1 − 1) ≤ ec−1 − 1− (c− 1)c.

Set φ(u) = eu−1−1− (u−1)u. The function φ′ is convex, φ′(1) = 0 and φ′(2) < 0.
Thus, φ′ is negative on (1, 2), so that φ(c) < φ(1) = 0. It now follows that ψ is
decreasing on [0, 1], so that ψ(p) ≤ ψ(0) = 1. This proves the first claim. The
proof of the second claim is similar. �

Proof of Theorem 1. Let 0 < ε < 1. Choose c ∈ (1, 2) and δ > 0 so that

1− δ
c

> 1− ε

2
, (1 + δ)c < 1 +

ε

2
.

Let d > 0 be so that the bound in Lemma 3 satisfies e(1−c)d < ε
2
. By Proposition 1,

there exists γ > 0 so that for every n ∈ N,

(1− δ) Xn
k

n+ γ
≤ p̂k(X

n) ≤ (1 + δ)
Xn
k + γ

n
, k = 1, . . . , K.

Let N be so large that

(1− δ)
(

1

c
− d

N

)
1

1 + γ/N
> 1− ε, (1 + δ)

d+ γ

N
<
ε

2
.

Fix k, pk and n with npk ≥ N . Set A = { 1
n
Xn
k < cpk+

d
n
} andB = { 1

n
Xn
k >

pk
c
− d
n
}.

On A,

p̂k(X
n)

pk
≤ (1 + δ)

Xn
k + γ

npk
≤ (1 + δ)

(
c+

d+ γ

npk

)
≤ (1 + δ)

(
c+

d+ γ

N

)
< 1 + ε

and on B,

p̂k(X
n)

pk
≥ (1− δ)X

n
k

npk

n

n+ γ
≥ (1− δ)

(
1

c
− d

npk

)
1

1 + γ/n

≥ (1− δ)
(

1

c
− d

N

)
1

1 + γ/N
> 1− ε.

By Lemma 3, Pp(A ∩B) ≥ 1− Pp(Ac)− Pp(Bc) ≥ 1− ε. �

Remark 3′′. In the proof of Theorem 1 one can choose c = 1 + ε
4
, δ = ε

5
, and

d = 3ε−2. If the prior-dependent constant γ > 0 is so chosen that the inequalities
in (3) hold with ε replaced by ε

5
, then it follows by a small variation of the above

proof that the conclusion of Theorem 1 holds for N = 8ε−3 + 3γε−1.

The proof of Example 1 uses the following lower bound for the Bayes estimates
of p1.
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Lemma 4. Let π(p) = e−1/p, 0 < p ≤ 1. Then∫ 1

0
pν+1(1− p)n−νπ(p) dp∫ 1

0
pν(1− p)n−νπ(p) dp

≥ 1

8
√

1 ∨ n
for every n ∈ N0 and ν = 0, . . . , n.

Proof. Let U be a random variable with density proportional to pν(1−p)n−νπ(p)
and let V be a random variable with density proportional to (1−p)nπ(p), 0 < p <
1. Then U is larger than V in the likelihood ratio order since pν(1−p)n−νπ(p)/[(1−
p)nπ(p)] = (p/(1− p))ν is increasing in p. This implies that E(U) ≥ E(V ), that is,∫ 1

0
pν+1(1− p)n−νπ(p) dp∫ 1

0
pν(1− p)n−νπ(p) dp

≥
∫ 1

0
p(1− p)nπ(p) dp∫ 1

0
(1− p)nπ(p) dp

,

see [5], page 70. It is therefore enough to prove the claim for ν = 0.

Let fn(p) = cn(1− p)nπ(p), where cn = [
∫ 1

0
(1− p)nπ(p) dp]−1. We have

f ′n(p) = cn
e−1/p(1− p)n−1

p2
(1− p− np2),

showing that fn is increasing on [0, 2an], where an = 1/(4
√

1 ∨ n). Hence∫ 1

an
fn(p) dp

1−
∫ 1

an
fn(p) dp

=

∫ 1

an
fn(p) dp∫ an

0
fn(p) dp

≥
∫ 2an
an

fn(p) dp

anfn(an)
≥ (2an − an)f(an)

anfn(an)
= 1.

Thus
∫ 1

an
fn(p) dp ≥ 1

2
, and therefore∫ 1

0

pfn(p) dp ≥
∫ 1

an

pfn(p) dp ≥ an

∫ 1

an

fn(p) dp ≥ 1

2
an =

1

8
√

1 ∨ n
. �

Proof of Example 1. Let N ∈ N. For n > N2 define p(n) ∈ ∆ by p1(n) =

Nn−
1
2
−δ. By Lemma 4, p̂1(Xn) − 2p1(n) ≥ n−

1
2 (1

8
− 2Nn−δ), and so, for n suffi-

ciently large, Pp(n)(|p̂1(Xn)− p1(n)| > p1(n)) = 1. �

Proof of Example 2. Suppose π satisfies Condition P(α), α ∈ (0,∞)K . By
Proposition 1, there exists γ > 0 so that p̂1(Xn) ≥ α1/[2(n + γ)]. For every
n > α1/8 pick p(n) ∈ ∆ with p1(n) = α1/(8n). Let n0 = max(α1/8, γ). If
n > n0, then α1/[2(n + γ)] > 2p1(n), and so Pp(n)(|p̂1(Xn)− p1(n)| > p1(n)) = 1.
Since lim supn→∞ ζ(n)/n = ∞, there exists for every N ∈ N an n > n0 with
ζ(n)p1(n) ≥ N . �

The following result was used in Remark 4.

Proposition 2. Let K > 2 and k̄ ∈ {1, . . . , K}. Suppose the density π of the
prior distribution on ∆ satisfies Condition P(α1, . . . , αK) with α1, . . . , αK > 0.
Then the image measure induced by the mapping (p1, . . . , pK) 7→ (pk̄,

∑
k 6=k̄ pk) has

a density that satisfies Condition P(αk̄,
∑

k 6=k̄ αk).
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Proof. Suppose without loss of generality that k̄ = 1. Then the image measure
has a density π1 with respect to the normalized Lebesgue measure on ∆1 = {q ∈
[0, 1]2 : q1 + q2 = 1} which is given by

π1(q) =

∫
A(q2)

π

(
q1, p2, . . . , pK−1, q2 −

K−1∑
k=2

pk

)
d(p2, . . . , pK−1),

where

A(q2) = {(p2, . . . , pK−1) ∈ (0, 1)K−2 : p2 + · · ·+ pK−1 < q2}.
Making the change of variable t = (t2, . . . , tK−1) = q−1

2 (p2, . . . , pK−1) we get

π1(q) = qK−2
2

∫
A(1)

π

(
q1, q2t, q2

(
1−

K−1∑
k=2

tk

))
dt

for q ∈ ∆1 with q2 > 0. Since π satisfies Condition P(α1, . . . , αK), there exists

a continuous positive function π̃ on ∆ such that π̃(p) = π(p)/
∏K

k=1 p
αk−1
k for all

p ∈ int ∆. Hence, for q ∈ int ∆1,

π1(q)

qα1−1
1 q

(
∑K

k=2 αk)−1
2

=

∫
A(1)

π̃

(
q1, q2t, q2

(
1−

K−1∑
k=2

tk

))K−1∏
k=2

tαk−1
k

(
1−

K−1∑
k=2

tk

)αK−1

dt.

The integral is positive for every q ∈ ∆1 and, by dominated convergence, depends
continuously on q ∈ ∆1. Thus, π1 satisfies Condition P(α1, α2 + · · ·+ αK). �

Proof of Example 3. Let N ∈ N. For every n ≥ max(N, N
c

) let p(n) = (N
n
, 1−N

n
),

q(n) = (N
cn
, 1− N

cn
), ϑn = (p(n), q(n)), and

An =
{
p̂1(Xn) ≥ c

2
q̂1(Xn)

}
.

We will prove more than is stated, namely that Pϑn(An) → 0 as n → ∞. Let Yn
denote the number of times the blue die lands on side 1 in the first n periods. By
Proposition 1, there exists γ > 0 so that p̂1(Xn) ≤ 3

2
(Yn + γ)/(Bn + γ). For every

n ≥ max(N, N
c

) and b ∈ {0, 1, . . . , n}, by Lemma 4,

Pϑn(An|Bn = b) ≤ Pϑn

(
3

2

Yn + γ

b+ γ
≥ c

16
√

1 ∨ (n− b)

∣∣∣∣∣Bn = b

)
.

If b > n
2
µB, then c(b+γ)/(24

√
1 ∨ (n− b)) ≥ d

√
n with d := cµB/(48

√
1− µB/2),

and it follows that

Pϑn(An|Bn = b) ≤ Pϑn(Yn ≥ −γ + d
√
n|Bn = b).
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To bound the probability on the right-hand side we use a Poisson approximation
to the conditional distribution of Yn. Let Wν be a Poisson random variable with
mean ν. Then, by [6], (43) on page 89,

Pϑn
(
Yn ≥ −γ + d

√
n|Bn = b

)
≤ P

(
Wbp1(n) ≥ −γ + d

√
n
)

+ p1(n)

≤ P
(
WN ≥ −γ + d

√
n
)

+
N

n
.

In the second line we used the fact that WN is stochastically larger than Wbp1(n)

because N ≥ bp1(n), see [5], pages 67-70. Hence

Pϑn(An) ≤ Pϑn
(
Bn ≤

n

2
µB

)
+

∑
b:b>n

2
µB

Pϑn(An|Bn = b)Pϑn(Bn = b)

≤ Pϑn
(

1

n
Bn ≤

1

2
µB

)
+ P

(
WN ≥ −γ + d

√
n
)

+
N

n
.

As n → ∞, P(WN ≥ −γ + d
√
n) → 0 and, by the weak law of large numbers,

Pϑn( 1
n
Bn ≤ 1

2
µB)→ 0. Thus, Pϑn(An)→ 0 as n→∞. �

Proof of Example 4. Let Yn and Zn be the respective number of times the blue
and the red die land on side 1 in the first n periods. By Proposition 1, there exists
γ > 0 so that

Pϑ
(
p̂1(Xn) <

c

2
q̂1(Xn)

)
≥ Pϑ

(
3

2

Yn + γ

Bn + γ
<
c

4

Zn
n+ γ

)
≥ Pϑ

(
Yn = 0,

6γ

c
<
Bn

n
Zn

)
.

For every n ∈ N with n ≥ c pick ϑn = (p(n), q(n)) ∈ ∆2 with p1(n) = c
n

and

q1(n) = 1
n
. Let µ0 ∈ (0, µB) and µ1 ∈ (µB, 1). Then, for b = dµ0ne, . . . , bµ1nc,

Pϑn
(
Yn = 0,

6γ

c
<
Bn

n
Zn

∣∣∣∣Bn = b

)
≥ [1− p1(n)]nPϑn

(
6γ

cµ0

< Zn

∣∣∣∣Bn = bµ1nc
)
.

Now [1− p1(n)]n → e−c > 0 and, by [6], (43) on page 89,

Pϑn
(

6γ

cµ0

< Zn

∣∣∣∣Bn = bµ1nc
)
≥ P

(
W >

6γ

cµ0

)
− 1

n
,

where W is a Poisson random variable with mean 1− µ1. Hence

lim inf
n→∞

Pϑn
(
Yn = 0,

6γ

c
<
Bn

n
Zn

∣∣∣∣µ0n ≤ Bn ≤ µ1n

)
> 0.

Since P(µ0n ≤ Bn ≤ µ1n) → 1, it follows that there exists ε0 > 0 and n0 ∈ N so
that

Pϑn
(
p̂1(Xn) <

c

2
q̂1(Xn)

)
> ε0

for all n ≥ n0. Since ζ(p1(n))/p1(n)→∞ as n→∞, there exists for every N ∈ N
an n ≥ n0 with nζ(p1(n)) ≥ N and ϑn has the required properties. �
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Proof of Lemma 1. Set ` = d/(n∧m). By Markov’s inequality, for every t > 0,

(14) P
(
Tm
m
≥ 1

c′
Sn
n

+ `

)
= P

(
et(c

′Tm−m
n
Sn) ≥ etc

′`m
)
≤ E[et(c

′Tm−m
n
Sn)]

etc′`m
.

We will determine a suitable value for t so that the expectation is at most 1. Let
ξ and τ be Bernoulli variables with P(ξ = 1) = p and P(τ = 1) = q. Then

(15) E[et(c
′Tm−m

n
Sn)] = E(etc

′Tm)E(e−t
m
n
Sn) = [E(etc

′τ )]m[E(e−t
m
n
ξ)]n.

For t > 0 and s ∈ R let ψt(s) = (1− s+ sec
′t)(1− cs+ cse−t). Since p ≥ cq,

E(etc
′τ )E(e−tξ) = (1− q + qec

′t)(1− p+ pe−t) ≤ ψt(q).

We have ψt(0) = 1, and ψ′′t (s) = 2c(ec
′t − 1)(e−t − 1) < 0, so that ψt is concave.

For t0 := (c′ + 1)−1 log(c/c′),

ψ′t0(0) = ec
′t0 − 1 + c(e−t0 − 1) =

∫ t0

0

e−u[c′e(c′+1)u − c] du < 0,

so that ψt0(s) ≤ 1 for s ≥ 0. Hence,

(16) E(ec
′t0τ )E(e−t0ξ) ≤ 1.

Ifm ≤ n, then by Lyapunov’s inequality, [E(e−t0
m
n
ξ)]n ≤ [E(e−t0ξ)]m. Combining

this inequality with (15) and (16) yields

E[et0(c′Tm−m
n
Sn)] ≤ [E(et0c

′τ )]m[E(e−t0ξ)]m ≤ 1,

and so, by (14),

P
(
Tm
m
≥ 1

c′
Sn
n

+ `

)
≤ e−t0c

′`m =

(
c′

c

)c′d/(c′+1)

.

If m > n, then Lyapunov’s inequality gives [E(etc
′τ )]m ≤ [E(etc

′ m
n
τ )]n. Setting

t1 = n
m
t0, we get in this case

E[et1(c′Tm−m
n
Sn)] ≤ [E(et1c

′ m
n
τ )]n[E(e−t1

m
n
ξ)]n ≤ 1,

and so

P
(
Tm
m
≥ 1

c′
Sn
n

+ `

)
≤ e−t1c

′`m =

(
c′

c

)c′d/(c′ + 1)
. �

Proof of Lemma 2. We will use a Poisson approximation to the binomial distri-
bution. IfWν is a Poisson random variable with mean ν > 0, then P(Wν ≤M)→ 0
as ν → ∞. Thus there exists N0 ∈ N so that P(Wν ≤ M) < 1

2
ε for ν > N0. By

[6], (43) on page 89, |Pp(Sn ≤ M) − P(Wnp ≤ M)| ≤ p. Thus if np ≥ N0 and
p ≤ 1

2
ε, then Pp(Sn ≤M) ≤ ε. In particular, for p = 1

2
ε and n = d2N0/εe, we have

Pε/2(Sd2N0/εe ≤M) ≤ ε.
On the other hand, if p > 1

2
ε and n ≥ 2N0/ε, then

Pp(Sn ≤M) ≤ Pε/2(Sn ≤M) ≤ Pε/2(Sd2N0/εe ≤M) ≤ ε,
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where we used the fact that the family of binomial distributions is stochastically
increasing in both parameters, see e.g. [5], pages 67-70. The claim follows with
N = 2N0/ε. �
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