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This appendix contains omitted proofs. Before we prove Theorem 1 we prove
Proposition 1 and then state and prove a simple consequence of Chernoff’s in-
equality. Both results are needed in the proof of Theorem 1.

Proof of Proposition 1. The assumption that m(p)/ []/, po " is uniformly con-
tinuous on int A implies that the function has a continuous extension 7 : A — R,
see [1], Theorem 5.2, page 302. Let 7o = min{7(p) : p € A}. Then 75 > 0. Given
e > 0, choose ¢ € (0,7) so small that
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o
To approximate the integrals in the assertion by sums of Dirichlet integrals we
use the fact that the continuous function 7 can be uniformly approximated by
Bernstein polynomials, see [2], pages 6 and 51. Thus, there is a polynomial
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so that
|7 (p) — h(p)| <6, peA.

Using the formula
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and the relation I'(s + 1) = sI'(s), we get
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Since ¢, > 0 for every v, it follows that
Sk _ fm( il 1pf’_1> h(p) dA(p) o mts
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(1 —~ i) h(p) < 7(p) < (1 + i) h(p).
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It follows from these inequalities together with (12) and (13) that for n, ny, ..., ng €
NO with Zfil n; =mn,
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ST ) amyarm) (TS i) 7 (p) dA)
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Similarly, using the inequality 1/(1+ ¢) > 1 — ¢, we obtain
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ng + ag
m—irn—l—Zfilai.

> (1—¢)
The assertion follows with v =m + Zfil a;. O

Remark 3’. Using results on the degree of approximation by Bernstein polyno-
mials, one may compute explicit values for the constant + in Proposition 1. If, for
example, K = 2 and ¢(p;) = 7(p1,1 — p1) has a continuous derivative on [0, 1],
one can apply Theorem 1.6.1 in [2] to show that (3) holds with

_ 5 2\ max{|¢'(p)| : 0 < p1 < 1}]”
To et {_ (1+_) min{¢(p1) : 0 < py < 1} -‘ '

4 €
If K > 2 and 7 coincides with a polynomial on A, then, by a result of [3], 7 can
be written as a finite mixture of densities of Dirichlet distributions and Theorem 3
of [4] gives a computable upper bound on the support of the mixing distribution.
Thus, the inequalities in (4) hold with computable constants a and A.

Lemma 3. Let S, be a binomial random variable with parameters n and p. Let
l<e<2andd>0. Then

n n
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Proof. By Chernoft’s inequality,

P (% > op + g) <inf |:€—t(cp+%)(1 _p_|_p6t)]” < 6(1_C)d[¢(p)]n,

>0



where 1(s) = e(179(1 — 5 + se™1). For 0 < s < 1,

V'(s)

e(l—c)es
Set ¢(u) = €“" ' —1— (u—1)u. The function ¢’ is convex, ¢'(1) = 0 and ¢'(2) < 0.
Thus, ¢ is negative on (1,2), so that ¢(c) < ¢(1) = 0. It now follows that 1 is
decreasing on [0, 1], so that ¥ (p) < ¥(0) = 1. This proves the first claim. The
proof of the second claim is similar. []
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Proof of Theorem 1. Let 0 < ¢ < 1. Choose ¢ € (1,2) and 6 > 0 so that

1—-9 € €
>1-— = 14+0e< 1+ —.
- 5 (LHde<l+g

Let d > 0 be so that the bound in Lemma 3 satisfies e(!=9?¢ < 5. By Proposition 1,
there exists v > 0 so that for every n € N,

XTL R XTL_‘_,Y
1—0)—" <pp(X™) < (140)—E— k=1,...,K.
(1-0)=E < < (4=l -
Let N be so large that
1 d 1 d+v €
1-0)l-—=)|—=>1- 140)— < =.
( )<c N>1+7ﬂv> ¢ I+ <3

Fix k, py and n withnp, > N. Set A = {1 X" < cpp+2} and B = {1 X > Be— 4},
On A,

DR (X" X d d
Pil )S(L+® k+7§(r+®(c+ +7)§(1+5)<c+—i1><1+e
Pk npg NPk N
and on B,
Pr(X™) > (1 )ﬁ n > (1) (l_i) _1
Dk npyn —+ -y c npp) l4+7/n
1 d 1
>(1-68)(--=)]———>1—c¢
> >Q: N)1+7ﬂv> €

By Lemma 3, P,(ANB)>1—-P,(A°) —P,(B°) >1—e. O

Remark 3”. In the proof of Theorem 1 one can choose ¢ =1+ ¢, § = £, and
d = 3e¢72. If the prior-dependent constant v > 0 is so chosen that the inequalities
in (3) hold with € replaced by £, then it follows by a small variation of the above

proof that the conclusion of Theorem 1 holds for N = 8¢=3 + 3ye L.

The proof of Example 1 uses the following lower bound for the Bayes estimates
of py.
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Lemma 4. Let (p) = e_l/”, 0<p<1. Then

fol V-H n—u,]r( )dp . 1
T AT

for every n € Ny cmdz/—O,...,n.

Proof. Let U be a random variable with density proportional to p*(1—p)" “m(p)
and let V be a random variable with density proportional to (1—p)"7(p), 0 < p <
1. Then U is larger than V' in the likelihood ratio order since p”(1—p)* 7 (p)/[(1—
p)"m(p)] = (p/(1—p))" is increasing in p. This implies that E(U) > E(V), that is,

Jo (1 —p)”‘ _ Jon () dp.
fo )rrm(p fo (1—p)w(p)dp
see [5], page 70. It is therefore enough to prove the Ciaim for v = 0.
Let f.(p) = cn(1 — p)"n(p), where ¢, = fo (1 —p)"n(p) dp]~'. We have
6_1/p 1— D n—1
fn(p) = cn (pQ) (1—p—np?),
showing that fn is increasing on [O 2a,], where a,, = 1/(4v/1V n). Hence
Jon h®)lp o, S D) [ S0V (20, — ) flan)
1—f fn p fO fn anfn(an) N anfn<an) '

Thus fan fa(p)dp > 3, and therefore

! O
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Proof of Example 1. Let N € N. For n > N? define p(n) € A by pi(n) =
Nn~27°_ By Lemma 4, p,(X") — 2p;(n) > n_%(% — 2Nn=%), and so, for n suffi-
ciently large, Py ([p1(X") — pi(n)| > pi(n)) = 1. O

Proof of Example 2. Suppose m satisfies Condition P(a), a € (0,00)%. By
Proposition 1, there exists v > 0 so that p(X") > a1/[2(n + 7)]. For every
n > ap/8 pick p(n) € A with pi(n) = a1/(8n). Let ng = max(a;/8,7v). If
n > ng, then oy /[2(n + )] > 2pi(n), and s0 Py (|p1(X™) — pi(n)] > pi(n)) = 1.
Since limsup,, ,., ((n)/n = oo, there exists for every N € N an n > ny with

C(n)pi(n) = N. O

The following result was used in Remark 4.

| otwao= [ ph@dy=a, [ 5u0)do = S0, -
0 an an

Proposition 2. Let K > 2 and k € {1,...,K}. Suppose the density © of the
prior distribution on A satisfies Condition P(ay, ..., ax) with ai,...,ax > 0.
Then the image measure induced by the mapping (p1, ..., pr) = (Pks D_psi Pk) has
a density that satisfies Condition P(ag, Y5 k)-
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Proof. Suppose without loss of generality that & = 1. Then the image measure
has a density m with respect to the normalized Lebesgue measure on A; = {q €
[0,1]? : ¢ + g2 = 1} which is given by

K-1
7T1<Q) - /A( )7T<q1ap2a ooy PK—1,42 — Zpk:) d(an s 7pK—1)a
q2 k=2

where
Alge) = {(p2,-- - pk1) € (0, 1) ipo 4+ pr1 < g}
Making the change of variable t = (t5,...,tx_1) = q5 "(p2, ..., Pr—1) We get

K—1
7T1(CJ):CI§_2/ W(Qluq2t7Q2<]—_Ztk)>dt
A1)

k=2

for ¢ € Ay with g2 > 0. Since 7 satisfies Condition P(ay,...,ar), there exists

a continuous positive function # on A such that 7(p) = 7(p)/ [y po*¥~" for all
p € int A. Hence, for ¢ € int Ay,

m1(q)
q?l —1q§Zsz2 ag)—1
K-1 K-1 K-1 ag—1
A1) k=2 k=2 k=2

The integral is positive for every ¢ € A; and, by dominated convergence, depends
continuously on ¢ € A;. Thus, m; satisfies Condition P(ay, ag + -+ + ak). O

Proof of Example 3. Let N € N. For every n > max(N, %) let p(n) = (%’ 1_%)’
q(n) = (5,1 =25, 9u = (p(n),q(n)), and
c
= D n > —q " .

We will prove more than is stated, namely that Py, (4,) — 0 as n — oo. Let Y,

denote the number of times the blue die lands on side 1 in the first n periods. By

Proposition 1, there exists v > 0 so that p;(X") < 2(Y,, +7)/(Bn + 7). For every
3V, +v

n > max(N, %) and b € {0,1,...,n}, by Lemma 4,
c B, =b
2b+y T 16/IV(n—0b)| '

Ifb > Zpup, then ¢(b+v)/(24y/1V (n — b)) > dy/n with d := cup/(48\/1 — pp/2),
and it follows that

]P)ﬁn (An’Bn = b) < ]P)ﬁn <
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To bound the probability on the right-hand side we use a Poisson approximation
to the conditional distribution of Y,,. Let W, be a Poisson random variable with
mean v. Then, by [6], (43) on page 89,

Py, (Yo = =7 +dvn|B, = b) <P (W) = —7 +dvn) + pi(n)
<P (Wy > —v+dvn) +%.

In the second line we used the fact that Wy is stochastically larger than Wy, ()
because N > bpy(n), see [5], pages 67-70. Hence

n
Po,(A) S Po, (Bu< Sus)+ 3. Po,(Au|Bu = )Py, (By = b)

b:b>5up
1 1 N
< Py, ﬁBnSEHB +P(WN2—7+d\/ﬁ)+E-

As n — oo, PWy > —v + dy/n) — 0 and, by the weak law of large numbers,
Pﬂn(%Bn < %,uB) — 0. Thus, Py, (A,) = 0asn — oco. O

Proof of Example 4. Let Y, and Z, be the respective number of times the blue
and the red die land on side 1 in the first n periods. By Proposition 1, there exists
~v > 0 so that

3Y,+~ c Z,

&
IP(A X" < $4 X”>>IP> ° <<
o () < Saxm) 2B (G0 < S 2 )

6y B,
zm(Yn:o,—7<—Zn>.
n

C

For every n € N with n > ¢ pick 9, = (p(n),q(n)) € A? with p;(n) = £ and

QI(n) = % Let Ho € (07/JJB) and M1 € (/’LB7 1) Thenu for b = [Mon—l, SRR Luln
6 B, 6
o, (¥a=0.2 < 22,5, =0} 2 1 pi'Ba, (2 < 2,
n Clo
Now [1 — p1(n)]™ — e=¢ > 0 and, by [6], (43) on page 89,

c
6 6 1
Py, (i < Zn| B, = LumJ) 2P<W> i) _—

Clo CHo n

where W is a Poisson random variable with mean 1 — p;. Hence

Slo

Y

B, = me) .

By,
lim inf Py, (Yn — 0,9 By
C n

n— o0

pon < B, < um) > 0.

Since P(uon < B, < uyn) — 1, it follows that there exists ¢g > 0 and ng € N so
that

N n c. n
By, (1(X") < 501(X") > e
for all n > ng. Since ((p1(n))/p1(n) — oo as n — oo, there exists for every N € N
an n > ng with n{(p;(n)) > N and 9,, has the required properties. [J
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Proof of Lemma 1. Set £ = d/(n Am). By Markov’s inequality, for every ¢t > 0,

/ m , t(c' Tm—"2Sp)
(14) P (T_ > 15 _,_g) (et(c Tn=281) > ote gm> < Ele ]

m — dn

etc’fm

We will determine a suitable value for ¢ so that the expectation is at most 1. Let
¢ and 7 be Bernoulli variables with P(¢ = 1) = p and P(7 = 1) = ¢. Then

(15)  E[CTnw )] = BT E(e W) = [E(e"T)] " [E(e )]

/

For t > 0 and s € R let ¢;(s) = (1 — s + se“")(1 — ¢s + cse™). Since p > cq,

E(e"“E(e") = (1 — ¢ +ge”") (1 — p+pe™") < ¢u(q).
We have 1,(0) = 1, and 9/ (s) = 2¢(e* — 1)(e™* — 1) < 0, so that 1), is concave.
For ty := (¢ + 1) tlog(c/c),

to
P (0) = e — 1+ cle™™ — 1) = / e el — (] du < 0,
0
so that ¥, (s) < 1 for s > 0. Hence,
(16) E(e“P™)E(e %) < 1.

If m < n, then by Lyapunov’s inequality, [E(e %% ¢)]" < [E(e™%¢)]™. Combining
this inequality with (15) and (16) yields

E[c/olTn 5] < [B(o° )] [B(e ™))" < 1,
and so, by (14),

dd/(c+1)
P(T_mzl%_{_g)ge—tgc%m:( ) .
m cdn

If m > n, then Lyapunov’s inequality gives [E(e7)]™ < [E(e!%7)]". Setting
ty = -tg, we get in this case

Efeh T390 < [E(e 5 [E(e 59" < 1

/ /
N cd/(d+1)
P (T_ > lS_ +€) < ehictm _ <C_> O
dn

m =

o | o

and so

Proof of Lemma 2. We will use a Poisson approximation to the binomial distri-
bution. If W, is a Poisson random variable with mean v > 0, then P(W,, < M) — 0
as v — co. Thus there exists Ny € N so that P(W, < M) < 3¢ for v > Ny. By
[6], (43) on page 89, |P,(S, < M) —P(W,, < M)| < p. Thus if np > Ny and
p < i¢, then P,(S, < M) < e. In particular, for p = e and n = [2Ny/€], we have
Pej2(Stanosq) < M) <e.

On the other hand, if p > %e and n > 2N, /e, then

]P)p(sn < M) < IP>e/2(Sn < M) < Pe/Q(S[QNO/e] < M) <€,
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where we used the fact that the family of binomial distributions is stochastically
increasing in both parameters, see e.g. [5], pages 67-70. The claim follows with
N =2Ny/e. O
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