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Supporting Information 
 
Emission data: See supporting information in Fuglestvedt et al., 2008 (ref. 4);  
www.pnas.org/cgi/content/full/0702958104/DC1  
 
 
The analytical climate model 
 
This section describes a simple two-box analytical climate model similar to the model 
described by Schneider and Thompson (1981), which is used to calculate the long-term 
changes in global mean surface temperature due to emissions from the transport sector. 
By including a deep ocean, the analytical solution will include a long-term response of 
the climate system that is not represented in one-box models as used by Shine et al. (2005) 
for calculating global temperature change potentials (GTP). Using the approach described 
below, the derived time constants for the responses are consistent with the chosen values 
for the equilibrium climate sensitivity.  
 
The global mean surface temperature response to radiative forcing perturbations 
following pulse emissions from the transport sector is derived for this two-box model. 
Equation R12 below gives the general expression for an exponentially decaying RF pulse 
(all components, except CO2), while equation R19 gives the response to a CO2 
perturbation. 
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Figure 1: Schematic illustration of the two-box climate model  
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Energy balance equations for atmosphere/mixed layer ocean (subscript 1): 
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And for the deep ocean 
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T1 and T2 denotes the temperature perturbations caused by a radiative forcing Q(t). The 
climate sensitivity of the coupled system is denoted by λ (K/Wm-2). As the simpler 
atmosphere/mixed layer ocean the temperature (in the case of a constant Q) approach the 
equilibrium temperature change TE = Qλ as system approach equilibrium (T1-T2 approach 
zero). 
 
With the following parameters  
 
F: Advective mass flux of water from boundary layer to the deep ocean. It is assumed 
that F is constant in time, i.e. no feedback on the ocean circulation. 
Kz : Diffusion coefficient for turbulent mixing of heat between the mixed layer of the 
ocean and the deep ocean.  
Δz: Mixing depth for the turbulent mixing of heat 
C1: Heat capacity of mixed layer of the ocean 
C2: Heat capacity of the deep ocean 
cw: Specific heat of liquid water. 
The choice of numerical values for these parameters is discussed at the end of this section. 
 
To simplify the notation R1 is rewritten as 
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And R2 as 
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Where:  
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And 1Cτ λ= ⋅  
 
Differentiating R3 wrt. time t yields 
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Using R2 to substitute in R5 gives 
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We then use equation R3 to solve for T2 
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And substitute for T2 in R6 
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Where 
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The system is now transformed from a coupled system of first order differential equation 
(DE) to one second order ordinary DE (R9). This can now be solved using standard 
methods (e.g. Sydsæter, 1990). 
 
The corresponding homogeneous DE 
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Has a general solution of the form (if A2/4-B>0, which it is in this case) 
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The parameters r1 and r2 that define the time constants for the response of the climate 
model are independent of the radiative forcing and given by 
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And the parameters k1 and k2 are determined by the initial conditions (see below). 
 
 
Response for a pulse with exponentially decaying RF over time  
 
We now derive T(t) with an exponentially decaying forcing Q(t)=Q0e-t/τ following a pulse 
emission of gas i, by inserting Q as above in R9.  
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We are seeking a specific solution satisfying the non homogeneous DE in R10,  
u*(t) of the form  
 

i-t/ke(t)*u τ=  
 
The general solution is then 
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Inserting u*(t) in R10 to determine the coefficient k gives 
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The initial conditions are: 
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The coefficients k1 and k2 are derived from the initial conditions 
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And  
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The characteristic time constants for the climate response (τc1 and τc2) are independent of 
the nature of the RF.  
 
 
Response for CO2 emission pulse 
 
In the case of CO2 the concentration response to a pulse emission is more complicated 
due to multiple processes with different timescales governing the removal of CO2. Here 
we follow the method used by IPCC (2001) and represent this with the impulse response 
function R(t), derived from the Bern carbon cycle model (Joos et al., 1996) and used in 
IPCC (2001): 
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Thus the radiative forcing of the CO2 pulse is  
 

0( ) ( )Q t Q R t= ⋅          R14 
 

The DE for Ti(t) (equation R9) is a linear DE so that if T1,i(t) is a solution for the RF Qi(t), 
and T1,j(t) is a solution for the RF Qj(t), then T1(t)= T1,i(t) + T1,j(t) is a solution to R9 with 
a RF of Q(t) = Qi(t) + Qj(t). To find the temperature response for CO2 we only need to 
find specific solutions corresponding to each of the ai factors in R13, and then the 
response for CO2 is the sum of the 5 specific solutions.  

The first specific solution (for the constant a0 term) is has a different form than for 
exponential decaying RF (R12). The response to a constant radiative forcing is derived 
below. 
 
If the radiative forcing Q(t) is constant Qo the general solution is 
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The coefficients k1 and k2 are derived from the initial conditions 
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And  
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R15 can then be written as 
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The specific solutions for the exponentially decaying terms (a1-a4) are given by equation 
R12: 
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The overall temperature response for CO2 is then 
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Parameter values  
 
λ: Climate sensitivity, i.e. temperature increase at after new equilibrium at 2xCO2. A 
value of 0.9 K/Wm-2 is used. 



 8

 
F: Advective mass flux of water from boundary layer to the deep ocean, 

41.23 10F −= ⋅  kg m-2 s-1.  By conservation of mass F is equal in both directions. It is 
assumed that F is constant in time, i.e. no feedback on the ocean circulation. 
 
Kz : Diffusion coefficient for turbulent mixing of heat between the mixed layer of the 
ocean and the deep ocean. Kz = 4.4*10-5 m2s-1.  
Δz: Mixing depth for the turbulent mixing of heat, Δz=1000 m. 
 
Cw: Specific heat of liquid water: 4.2 103 J K-1 kg-1 
 
C1: Heat capacity of mixed layer (70 m) of the ocean: 2.94 108 J K-1m-2  
C2: Heat capacity of the deep ocean (3000 m): 1.26 1010 J K-1m-2 

 
Parameters in the CO2 impulse response function (IPCC, 2001): 
a0 = 0.1756 
a1 = 0.1375 
a2 = 0.1858 
a3 = 0.2423 
a4 = 0.2589 
τ1= 421.093 yr 
τ2=70.5969 yr 
τ3= 21.4216 yr 
τ4= 3.4154 y 
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