Significance

At the end of their growth phase, Drosophila larvae remodel their bodies, glue themselves to a substrate, and harden their cuticle in preparation for metamorphosis. This multistep motor program is called pupariation. Little is known about its neural basis. Here, we find that a pair of descending neurons electrically activates and partially orchestrates the pupariation behavior subunit required for substrate attachment, the glue expulsion and spreading behavior (GSB). These same GSB command neurons use a conserved neuropeptidergic signaling pathway (Mip-SPR signaling pathway) to fine-tune GSB components and their timing via SPR-positive interneurons in the ventral nerve cord. Our work opens the way to dissecting the pupariation neural network up- and downstream of this GSB circuit.

Abstract

At the end of their growth phase, Drosophila larvae remodel their bodies, glue themselves to a substrate, and harden their cuticle in preparation for metamorphosis. This process—termed pupariation—is triggered by a surge in the hormone ecdysone. Substrate attachment is achieved by a pupariation subprogram called glue expulsion and spreading behavior (GSB). An epidermis-to-CNS Dilp8-Lgr3 relaxin signaling event that occurs downstream of ecdysone is critical for unlocking progression of the pupariation motor program toward GSB, but the factors and circuits acting downstream of Lgr3 signaling remain unknown. Here, using cell-type-specific RNA interference and behavioral monitoring, we identify Myoinhibiting peptide (Mip) as a neuromodulator of multiple GSB action components, such as tetanic contraction, peristaltic contraction alternation, and head-waving. Mip is required in a pair of brain descending neurons, which act temporally downstream of Dilp8-Lgr3 signaling. Mip modulates GSB via ventral nerve cord neurons expressing its conserved receptor, sex peptide receptor (SPR). Silencing of Mip descending neurons by hyperpolarization completely abrogates GSB, while their optogenetic activation at a restricted competence time window triggers GSB-like behavior. Hence, Mip descending neurons have at least two functions: to act as GSB command neurons and to secrete Mip to modulate GSB action components. Our results provide insight into conserved aspects of Mip-SPR signaling in animals, reveal the complexity of GSB control, and contribute to the understanding of how multistep innate behaviors are coordinated in time and with other developmental processes through command neurons and neuropeptidergic signaling.

Get full access to this article

Purchase, subscribe or recommend this article to your librarian.

Data, Materials, and Software Availability

Scripts’ data have been deposited in GitHub (85). All other data are included in the manuscript and/or supporting information.

Acknowledgments

We thank Drs. Carlos Ribeiro, Nara Muraro, Fernanda Ceriani, and Mariana Melani for fly stocks and reagents. We thank lab members for discussions and/or comments on the manuscript. We thank Carolina Gomila for technical assistance. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) and Vienna Drosophila Resource Center were used in this study. Work in the Integrative Biomedicine Laboratory was supported by the Fundação para a Ciência e a Tecnologia (FCT) (PTDC/BIA-BID/31071/2017; PTDC/MED-NEU/30753/2017 (LISBOA-01-0145-FEDER-030753, with financing from the Programa Operacional Lisboa 2020); EXPL/BIA-BID/1524/2021; EXPL/BIA-COM/1296/2021; 10.54499/2022.03859.PTDC; 2023.15344.PEX), by the Research and Development Units iNOVA4Health (10.54499/UIDB/04462/2020) and Centre for Ecology, Evolution and Environmental Changes (cE3c) (10.54499/UIDB/00329/2020), by LS4FUTURE and CHANGE financed by the FCT/Ministério da Ciência, Tecnologia e Ensino Superior (Portugal), by Congento LISBOA-01-0145-FEDER-022170, cofinanced by FCT/Lisboa2020; UID/Multi/04462/2019, and by the Microscopy Facility of Faculdade de Ciências da Universidade de Lisboa (PPBI-POCI-01-0145-FEDER-022122). Work in the Garelli lab was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT-2017-0254 and PICT-2020-01568), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP11220150100182CO), and UNS-PGI-24/B288. The generation of Mip-GAL4 lines was supported by the Deutsche Forschungsgemeinschaft (DFG WE 2652/4-1,2, to C.W.). A.M.G. and F.H. were individually supported by Grants 10.54499/CEECINST/00102/2018/CP1567/CT0031 and 10.54499/DL57/2016/CP1457/CT0016, respectively. A.G. and Y.A.V. are CONICET researchers. M.A. and M.S.P. held a CONICET doctoral fellowship and J.I. an undergraduate fellowship from Consejo Interuniversitario Nacional. All reagents and fly strains generated in this study are available from the corresponding authors without restriction.

Author contributions

F.H., A.M.G., and A.G. designed research; M.F.-A., R.Z., F.H., Y.A.V., J.M., K.P., J.I., M.A., M.S.P., A.M.G., and A.G. performed research; J.A.V. and C.W. contributed new reagents/analytic tools; M.F.-A., R.Z., F.H., Y.A.V., J.M., K.P., J.I., M.A., M.S.P., J.A.V., A.M.G., and A.G. analyzed data; J.A.V. and C.W. contributed to drafting and revisions; and A.M.G. and A.G. wrote the paper.

Competing interests

The authors declare no competing interest.

Supporting Information

Appendix 01 (PDF)
Movie S1.
Example of videos of larvae performing a normal (top, R48H10>+) and abnormal GSB (bottom, R48H10>Mip-IR) recorded in the pupariation monitor device during the screen and synchronized at the beginning of GSB. Occurrence of pre-GSB contractions is indicated with a yellow hyphen and helps to identify the moment when GSB is expected to occur in those larvae with abnormal or absent GSB. The dashed silhouette marks the starting position of each larva. Larvae usually move forward about one third the length of their body during GSB. Video reproduced at 3X speed.
Movie S2.
Footage of Mip2M>ReaChR larvae doing a light induced GSB followed by a spontaneous GSB within the five minute-long unstimulated period, demonstrating that larval response to light constitute a separate behavioral event. Video reproduced at 4x speed. Time of spontaneous GSB: Left, 01:52; center and right, 01:20
Movie S3.
Wandering larvae fed with 100 μM all-trans retinal (ATR) were stimulated with 10 pulses of green light of 0.5 seconds of duration at 1 Hz. Control larvae not fed with ATR did not respond to light, while those supplemented did a GSB-like behavior.
Movie S4.
Example of videos of larvae showing muscle GCaMP fluctuations performing a normal (left, wild type) and abnormal GSB (right, Mip1 null mutant). Wild type animals display the whole GSB behavioral sequence. It begins with a tetanic contraction of the anterior segments that expels glue from the salivary glands, followed by back-and-forth peristaltic waves that spread it over the ventral surface. GSB culminates with a “head waving” movement. Larvae that lack Mip neuropeptide can still initiate GSB, but it primarily consists of backwards movements.

References

1
K. J. Burke Jr., K. J. Bender, Modulation of ion channels in the axon: Mechanisms and function. Front. Cell. Neurosci. 13, 221 (2019).
2
E. Marder, D. Bucher, D. J. Schulz, A. L. Taylor, Invertebrate central pattern generation moves along. Curr. Biol. 15, R685–R699 (2005).
3
M. Q. Clark, A. A. Zarin, A. Carreira-Rosario, C. Q. Doe, Neural circuits driving larval locomotion in Drosophila. Neural Dev. 13, 6 (2018).
4
S. B. M. Gowda, S. Salim, F. Mohammad, Anatomy and neural pathways modulating distinct locomotor behaviors in Drosophila larva. Biology (Basel) 10, 90 (2021).
5
H. Kohsaka et al., Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae. Nat. Commun. 10, 2654 (2019).
6
J. Berni, S. R. Pulver, L. C. Griffith, M. Bate, Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Curr. Biol. 22, 1861–1870 (2012).
7
A. Carreira-Rosario et al., MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. eLife 7, e38554 (2018).
8
A. Fushiki et al., A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 5, e13253 (2016).
9
S. Takagi et al., Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila. Neuron 96, 1373–1387.e6 (2017).
10
I. Kupfermann, K. R. Weiss, The command neuron concept. Behav. Brain Sci. 1, 3–10 (1978).
11
M. Yoshihara, M. Yoshihara, “Necessary and sufficient” in biology is not necessarily necessary—Confusions and erroneous conclusions resulting from misapplied logic in the field of biology, especially neuroscience. J. Neurogenet. 32, 53–64 (2018).
12
J. Ewer, S. C. Gammie, J. W. Truman, Control of insect ecdysis by a positive-feedback endocrine system: Roles of eclosion hormone and ecdysis triggering hormone. J. Exp. Biol. 200, 869–881 (1997).
13
A. C. Clark, M. L. del Campo, J. Ewer, Neuroendocrine control of larval ecdysis behavior in Drosophila: Complex regulation by partially redundant neuropeptides. J. Neurosci. 24, 4283–4292 (2004).
14
J. Zdarek, G. Fraenkel, The mechanism of puparium formation in flies. J. Exp. Zool. 179, 315–323 (1972).
15
J. T. Warren et al., Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval development of Drosophila melanogaster: Correlations with changes in gene activity. Dev. Dyn. 235, 315–326 (2006).
16
G. Lam, C. S. Thummel, Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957–963 (2000).
17
F. Heredia et al., The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat. Commun. 12, 3328 (2021).
18
D. Blanco-Obregon et al., A Dilp8-dependent time window ensures tissue size adjustment in Drosophila. Nat. Commun. 13, 5629 (2022).
19
A. Garelli, A. M. Gontijo, V. Miguela, E. Caparros, M. Dominguez, Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336, 579–582 (2012).
20
J. Colombani, D. S. Andersen, P. Léopold, Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336, 582–585 (2012).
21
A. Garelli et al., Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat. Commun. 6, 8732 (2015).
22
D. M. Vallejo, S. Juarez-Carreño, J. Bolivar, J. Morante, M. Dominguez, A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science 350, aac6767 (2015).
23
J. Colombani et al., Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr. Biol. 25, 2723–2729 (2015).
24
J. S. Jaszczak, J. B. Wolpe, R. Bhandari, R. G. Jaszczak, A. Halme, Growth coordination during Drosophila melanogaster imaginal disc regeneration is mediated by signaling through the relaxin receptor Lgr3 in the prothoracic gland. Genetics 204, 703–709 (2016).
25
J.-Q. Ni et al., A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).
26
J.-Q. Ni et al., A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182, 1089–1100 (2009).
27
G. Dietzl et al., A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).
28
A. Biyasheva, T. V. Do, Y. Lu, M. Vaskova, A. J. Andres, Glue secretion in the Drosophila salivary gland: A model for steroid-regulated exocytosis. Dev. Biol. 231, 234–251 (2001).
29
M. W. Lorenz, R. Kellner, K. H. Hoffmann, A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus. J. Biol. Chem. 270, 21103–21108 (1995).
30
L. Schoofs, G. M. Holman, T. K. Hayes, R. J. Nachman, A. De Loof, Isolation, identification and synthesis of locusta myoinhibiting peptide (LOM-MIP), a novel biologically active neuropeptide from Locusta migratoria. Regul. Pept. 36, 111–119 (1991).
31
M. Williamson, C. Lenz, A. M. Winther, D. R. Nässel, C. J. Grimmelikhuijzen, Molecular cloning, genomic organization, and expression of a C-type (Manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster. Biochem. Biophys. Res. Commun. 282, 124–130 (2001).
32
R. Predel et al., Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: A mass spectrometric survey of peptides from individual flies. J. Comp. Neurol. 474, 379–392 (2004).
33
G. Baggerman, K. Boonen, P. Verleyen, A. De Loof, L. Schoofs, Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 40, 250–260 (2005).
34
W. Reiher et al., Peptidomics and peptide hormone processing in the Drosophila midgut. J. Proteome Res. 10, 1881–1892 (2011).
35
Y. Oh et al., A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide. PLoS Biol. 12, e1001974 (2014).
36
S. Min et al., Identification of a peptidergic pathway critical to satiety responses in Drosophila. Curr. Biol. 26, 814–820 (2016).
37
Y.-H. Jang, H.-S. Chae, Y.-J. Kim, Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat. Commun. 8, 1630 (2017).
38
T. R. Sizemore, J. Jonaitis, A. M. Dacks, Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat. Commun. 14, 5280 (2023).
39
A. Hussain, H. K. Üçpunar, M. Zhang, L. F. Loschek, I. C. Grunwald Kadow, Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 14, e1002455 (2016).
40
Y.-J. Kim, D. Zitnan, C. G. Galizia, K.-H. Cho, M. E. Adams, A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395–1407 (2006).
41
J. A. Veenstra, Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res. 336, 309–323 (2009).
42
J. Chen, S.-M. Kim, J. Y. Kwon, A systematic analysis of Drosophila regulatory peptide expression in enteroendocrine cells. Mol. Cells 39, 358–366 (2016).
43
B. D. Pfeiffer et al., Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105, 9715–9720 (2008).
44
R. Predel, J. Rapus, M. Eckert, Myoinhibitory neuropeptides in the American cockroach. Peptides 22, 199–208 (2001).
45
J. G. Santos et al., Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS ONE 2, e695 (2007).
46
D. Park, J. A. Veenstra, J. H. Park, P. H. Taghert, Mapping peptidergic cells in Drosophila: Where DIMM fits in. PLoS ONE 3, e1896 (2008).
47
L. Röder, C. Vola, S. Kerridge, The role of the teashirt gene in trunk segmental identity in Drosophila. Development 115, 1017–1033 (1992).
48
M. Calleja, E. Moreno, S. Pelaz, G. Morata, Visualization of gene expression in living adult Drosophila. Science 274, 252–255 (1996).
49
A. C. Hergarden, T. D. Tayler, D. J. Anderson, Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci. U.S.A. 109, 3967–3972 (2012).
50
A. Nern, B. D. Pfeiffer, G. M. Rubin, Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl. Acad. Sci. U.S.A. 112, E2967–E2976 (2015).
51
S. T. Sweeney, K. Broadie, J. Keane, H. Niemann, C. J. O’Kane, Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).
52
R. I. Hoogstraaten, L. van Keimpema, R. F. Toonen, M. Verhage, Tetanus insensitive VAMP2 differentially restores synaptic and dense core vesicle fusion in tetanus neurotoxin treated neurons. Sci. Rep. 10, 10913 (2020).
53
D. Owald, S. Lin, S. Waddell, Light, heat, action: Neural control of fruit fly behaviour. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 370, 20140211 (2015).
54
A. S. Thum et al., Differential potencies of effector genes in adult Drosophila. J. Comp. Neurol. 498, 194–203 (2006).
55
D. Pauls et al., Potency of transgenic effectors for neurogenetic manipulation in Drosophila larvae. Genetics 199, 25–37 (2015).
56
H. K. Inagaki et al., Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325–332 (2014).
57
P. S. Chen et al., A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291–298 (1988).
58
Y.-J. Kim et al., MIPs are ancestral ligands for the sex peptide receptor. Proc. Natl. Acad. Sci. U.S.A. 107, 6520–6525 (2010).
59
J. Poels et al., Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor. Cell. Mol. Life Sci. 67, 3511–3522 (2010).
60
N. Yapici, Y.-J. Kim, C. Ribeiro, B. J. Dickson, A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33–37 (2008).
61
H. Liu, E. Kubli, Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 100, 9929–9933 (2003).
62
V. R. Chintapalli, J. Wang, J. A. T. Dow, Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39, 715–720 (2007).
63
B. Deng et al., Chemoconnectomics: Mapping chemical transmission in Drosophila. Neuron 101, 876–893.e4 (2019).
64
E. M. Dewey et al., Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr. Biol. 14, 1208–1213 (2004).
65
R. H. Scheller et al., A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behavior in Aplysia. Cell 28, 707–719 (1982).
66
D.-H. Kim et al., Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling. PLoS Genet. 11, e1005513 (2015).
67
W. Song, J. A. Veenstra, N. Perrimon, Control of lipid metabolism by tachykinin in Drosophila. Cell Rep. 9, 40–47 (2014).
68
L. Guo, N. Zhang, J. H. Simpson, Descending neurons coordinate anterior grooming behavior in Drosophila. Curr. Biol. 32, 823–833.e4 (2022).
69
S. Namiki et al., A population of descending neurons that regulates the flight motor of Drosophila. Curr. Biol. 32, 1189–1196.e6 (2022).
70
M. P. Nusbaum, D. M. Blitz, E. Marder, Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 18, 389–403 (2017).
71
A. N. van den Pol, Neuropeptide transmission in brain circuits. Neuron 76, 98–115 (2012).
72
K. M. Cury, R. Axel, Flexible neural control of transition points within the egg-laying behavioral sequence in Drosophila. Nat. Neurosci. 26, 1054–1067 (2023).
73
G. Jékely, Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. U.S.A. 110, 8702–8707 (2013).
74
O. Mirabeau, J.-S. Joly, Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. U.S.A. 110, E2028–E2037 (2013).
75
M. Dao, H. M. Stoveken, Y. Cao, K. A. Martemyanov, The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology 47, 902–913 (2022).
76
V. Isberg et al., Computer-aided discovery of aromatic l-α-amino acids as agonists of the orphan G protein-coupled receptor GPR139. J. Chem. Inf. Model. 54, 1553–1557 (2014).
77
A. C. Nøhr et al., The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Sci. Rep. 7, 1128 (2017).
78
C. Liu et al., GPR139, an orphan receptor highly enriched in the habenula and septum, is activated by the essential amino acids L-tryptophan and L-phenylalanine. Mol. Pharmacol. 88, 911–925 (2015).
79
T. Leitz, K. Morand, M. Mann, Metamorphosin A: A novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev. Biol. 163, 440–446 (1994).
80
M. Lechable et al., An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. Biol. Open 9, bio051268 (2020).
81
P. M. Erwin, A. M. Szmant, Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs 29, 929–939 (2010).
82
M. Kipp, “Generic annotation tool multimodal dialogue” in Proceedings 7th European Conference Speech Communication Technology (2001).
83
J. Y. Lin, P. M. Knutsen, A. Muller, D. Kleinfeld, R. Y. Tsien, ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).
84
J. H. McDonald, Handbook of Biological Statistics (Lulu.com, 2012).
85
A. Garelli, LarvaTracking. Github. https://github.com/AndresGarelli/Larva_Tracking_OpenCV/releases/tag/v1.0.0. Deposited 27 February 2025.

Information & Authors

Information

Published in

The cover image for PNAS Vol.122; No.11
Proceedings of the National Academy of Sciences
Vol. 122 | No. 11
March 18, 2025
PubMed: 40085652

Classifications

Data, Materials, and Software Availability

Scripts’ data have been deposited in GitHub (85). All other data are included in the manuscript and/or supporting information.

Submission history

Received: October 5, 2024
Accepted: February 13, 2025
Published online: March 14, 2025
Published in issue: March 18, 2025

Keywords

  1. neuromodulation
  2. Drosophila
  3. innate behavior
  4. neuropeptide
  5. relaxin

Acknowledgments

We thank Drs. Carlos Ribeiro, Nara Muraro, Fernanda Ceriani, and Mariana Melani for fly stocks and reagents. We thank lab members for discussions and/or comments on the manuscript. We thank Carolina Gomila for technical assistance. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) and Vienna Drosophila Resource Center were used in this study. Work in the Integrative Biomedicine Laboratory was supported by the Fundação para a Ciência e a Tecnologia (FCT) (PTDC/BIA-BID/31071/2017; PTDC/MED-NEU/30753/2017 (LISBOA-01-0145-FEDER-030753, with financing from the Programa Operacional Lisboa 2020); EXPL/BIA-BID/1524/2021; EXPL/BIA-COM/1296/2021; 10.54499/2022.03859.PTDC; 2023.15344.PEX), by the Research and Development Units iNOVA4Health (10.54499/UIDB/04462/2020) and Centre for Ecology, Evolution and Environmental Changes (cE3c) (10.54499/UIDB/00329/2020), by LS4FUTURE and CHANGE financed by the FCT/Ministério da Ciência, Tecnologia e Ensino Superior (Portugal), by Congento LISBOA-01-0145-FEDER-022170, cofinanced by FCT/Lisboa2020; UID/Multi/04462/2019, and by the Microscopy Facility of Faculdade de Ciências da Universidade de Lisboa (PPBI-POCI-01-0145-FEDER-022122). Work in the Garelli lab was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT-2017-0254 and PICT-2020-01568), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP11220150100182CO), and UNS-PGI-24/B288. The generation of Mip-GAL4 lines was supported by the Deutsche Forschungsgemeinschaft (DFG WE 2652/4-1,2, to C.W.). A.M.G. and F.H. were individually supported by Grants 10.54499/CEECINST/00102/2018/CP1567/CT0031 and 10.54499/DL57/2016/CP1457/CT0016, respectively. A.G. and Y.A.V. are CONICET researchers. M.A. and M.S.P. held a CONICET doctoral fellowship and J.I. an undergraduate fellowship from Consejo Interuniversitario Nacional. All reagents and fly strains generated in this study are available from the corresponding authors without restriction.
Author contributions
F.H., A.M.G., and A.G. designed research; M.F.-A., R.Z., F.H., Y.A.V., J.M., K.P., J.I., M.A., M.S.P., A.M.G., and A.G. performed research; J.A.V. and C.W. contributed new reagents/analytic tools; M.F.-A., R.Z., F.H., Y.A.V., J.M., K.P., J.I., M.A., M.S.P., J.A.V., A.M.G., and A.G. analyzed data; J.A.V. and C.W. contributed to drafting and revisions; and A.M.G. and A.G. wrote the paper.
Competing interests
The authors declare no competing interest.

Notes

This article is a PNAS Direct Submission.

Authors

Affiliations

Magdalena Fernandez-Acosta1
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Present address: Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—Instituto de Investigaciones Bioquímicas de Buenos Aires (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires C1405BWE, Argentina.
Rebeca Zanini1
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
Fabiana Heredia
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
Katja Prüger
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Present address: Center for Virology, Medical University of Vienna, Vienna 1090, Austria.
Julieta Ibarra
Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
Maite Arana
Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
María S. Pérez
Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
Institut de Neurosciences Cognitives et Intégratives d’Aquitaine UMR 5287 CNRS, Université de Bordeaux, Bordeaux 33076, France
Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg 97074, Germany
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina

Notes

4
To whom correspondence may be addressed. Email: [email protected] or [email protected].
1
M.F.-A. and R.Z. contributed equally to this work.

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Altmetrics

Citations

Export the article citation data by selecting a format from the list below and clicking Export.

View Options

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login

Recommend to a librarian

Recommend PNAS to a Librarian

Purchase options

Purchase this article to access the full text.

Single Article Purchase

Triggering and modulation of a complex behavior by a single peptidergic command neuron in Drosophila
Proceedings of the National Academy of Sciences
  • Vol. 122
  • No. 11

View options

PDF format

Download this article as a PDF file

DOWNLOAD PDF

Figures

Tables

Media

Share

Share

Share article link

Share on social media

Further reading in this issue