A duplicated motif controls assembly of zona pellucida domain proteins
Abstract
Many secreted eukaryotic glycoproteins that play fundamental roles in development, hearing, immunity, and cancer polymerize into filaments and extracellular matrices through zona pellucida (ZP) domains. ZP domain proteins are synthesized as precursors containing C-terminal propeptides that are cleaved at conserved sites. However, the consequences of this processing and the mechanism by which nascent proteins assemble are unclear. By microinjection of mutated DNA constructs into growing oocytes and mammalian cell transfection, we have identified a conserved duplicated motif [EHP (external hydrophobic patch)/IHP (internal hydrophobic patch)] regulating the assembly of mouse ZP proteins. Whereas the transmembrane domain (TMD) of ZP3 can be functionally replaced by an unrelated TMD, mutations in either EHP or IHP do not hinder secretion of full-length ZP3 but completely abolish its assembly. Because mutants truncated before the TMD are not processed, we conclude that the conserved TMD of mammalian ZP proteins does not engage them in specific interactions but is essential for C-terminal processing. Cleavage of ZP precursors results in loss of the EHP, thereby activating secreted polypeptides to assemble by using the IHP within the ZP domain. Taken together, these findings suggest a general mechanism for assembly of ZP domain proteins.
Acknowledgments
L.J. dedicates this paper to the memory of his father, Gian Jovine. We thank C. Darie and K. Quadrini for comments. Confocal microscopy was performed at the Mount Sinai School of Medicine Microscopy Shared Resource Facility. L.J. was supported by a Human Frontier Science Program long-term fellowship. This research was supported in part by National Institutes of Health Grant HD35105.
Supporting Information
Adobe PDF - 01600Fig5.pdf
Adobe PDF - 01600Fig5.pdf
- Download
- 163.68 KB
Adobe PDF - 01600Fig6.pdf
Adobe PDF - 01600Fig6.pdf
- Download
- 89.34 KB
References
1
Jovine, L., Qi, H., Williams, Z., Litscher, E. & Wassarman, P. M. (2002) Nat. Cell Biol. 4, 457–461.
2
Bork, P. & Sander, C. (1992) FEBS Lett. 300, 237–240.
3
Wassarman, P. M., Jovine, L. & Litscher, E. S. (2001) Nat. Cell Biol. 3, E59–E64.
4
Jovine, L., Litscher, E. & Wassarman, P. M. (2002) in Gene Expression at the Beginning of Animal Development, ed. DePamphilis, M. L. (Elsevier, Amsterdam), Vol. 12, pp. 31–54.
5
Litscher, E. S., Qi, H. & Wassarman, P. M. (1999) Biochemistry 38, 12280–12287.
6
Qi, H., Williams, Z. & Wassarman, P. M. (2002) Mol. Biol. Cell 13, 530–541.
7
Boja, E. S., Hoodbhoy, T., Fales, H. M. & Dean, J. (2003) J. Biol. Chem. 278, 34189–34202.
8
Yonezawa, N. & Nakano, M. (2003) Biochem. Biophys. Res. Commun. 307, 877–882.
9
Sugiyama, H., Murata, K., Iuchi, I., Nomura, K. & Yamagami, K. (1999) J. Biochem. (Tokyo) 125, 469–475.
10
Kubo, H., Matsushita, M., Kotani, M., Kawasaki, H., Saido, T. C., Kawashima, S., Katagiri, C. & Suzuki, A. (1999) Dev. Genet. 25, 123–129.
11
Sasanami, T., Pan, J., Doi, Y., Hisada, M., Kohsaka, T. & Toriyama, M. (2002) Eur. J. Biochem. 269, 2223–2231.
12
Killick, R., Legan, P. K., Malenczak, C. & Richardson, G. P. (1995) J. Cell Biol. 129, 535–547.
13
Fukuoka, S., Freedman, S. D., Yu, H., Sukhatme, V. P. & Scheele, G. A. (1992) Proc. Natl. Acad. Sci. USA 89, 1189–1193.
14
Sasaki, K., Sato, K., Akiyama, Y., Yanagihara, K., Oka, M. & Yamaguchi, K. (2002) Cancer Res. 62, 4894–4898.
15
Williams, Z. & Wassarman, P. M. (2001) Biochemistry 40, 929–937.
16
Kiefer, S. M. & Saling, P. (2002) Biol. Reprod. 66, 407–414.
17
Sasanami, T., Toriyama, M. & Mori, M. (2003) Biol. Reprod. 68, 1613–1619.
18
Steel, K. P. & Kros, C. J. (2001) Nat. Genet. 27, 143–149.
19
Marchuk, D. A., Srinivasan, S., Squire, T. L. & Zawistowski, J. S. (2003) Hum. Mol. Genet. 12, R97–R112.
20
Serafini-Cessi, F., Malagolini, N. & Cavallone, D. (2003) Am. J. Kidney Dis. 42, 658–676.
21
Kang, W. & Reid, K. B. (2003) FEBS Lett. 540, 21–25.
22
Copland, J. A., Luxon, B. A., Ajani, L., Maity, T., Campagnaro, E., Guo, H., LeGrand, S. N., Tamboli, P. & Wood, C. G. (2003) Oncogene 22, 8053–8062.
23
Harris, J., Seid, C., Fontenot, G. & Liu, H. (1999) Protein Expression Purif. 16, 298–307.
24
Boyd, D. & Beckwith, J. (1990) Cell 62, 1031–1033.
25
Locker, J. K. & Griffiths, G. (1999) J. Cell Biol. 144, 267–279.
26
Rozanov, D. V., Deryugina, E. I., Ratnikov, B. I., Monosov, E. Z., Marchenko, G. N., Quigley, J. P. & Strongin, A. Y. (2001) J. Biol. Chem. 276, 25705–25714.
27
Harrison, P. T. (1996) Mol. Membr. Biol. 13, 67–79.
28
Schanberg, L. E., Fleenor, D. E., Kurtzberg, J., Haynes, B. F. & Kaufman, R. E. (1991) Proc. Natl. Acad. Sci. USA 88, 603–607.
29
Hyllner, S. J., Westerlund, L., Olsson, P. E. & Schopen, A. (2001) Biol. Reprod. 64, 805–811.
30
Arukwe, A. & Goksøyr, A. (2003) Comp. Hepatol. 2, 4.
31
Sasanami, T., Pan, J. & Mori, M. (2003) J. Steroid Biochem. Mol. Biol. 84, 109–116.
32
Bausek, N., Waclawek, M., Schneider, W. J. & Wohlrab, F. (2000) J. Biol. Chem. 275, 28866–28872.
33
Zhao, M., Gold, L., Dorward, H., Liang, L. F., Hoodbhoy, T., Boja, E., Fales, H. M. & Dean, J. (2003) Mol. Cell. Biol. 23, 8982–8991.
34
Rosiere, T. K. & Wassarman, P. M. (1992) Dev. Biol. 154, 309–317.
35
Cocchia, M., Huber, R., Pantano, S., Chen, E. Y., Ma, P., Forabosco, A., Ko, M. S. & Schlessinger, D. (2000) Genomics 68, 305–312.
36
Yan, C., Pendola, F. L., Jacob, R., Lau, A. L., Eppig, J. J. & Matzuk, M. M. (2001) Genesis 31, 105–110.
37
Colomer, V., Lal, K., Hoops, T. C. & Rindler, M. J. (1994) EMBO J. 13, 3711–3719.
38
Xu, Z. G., Du, J. J., Zhang, X., Cheng, Z. H., Ma, Z. Z., Xiao, H. S., Yu, L., Wang, Z. Q., Li, Y. Y., Huo, K. K., et al. (2003) Hepatology 38, 735–744.
39
Handford, P. A., Downing, A. K., Reinhardt, D. P. & Sakai, L. Y. (2000) Matrix Biol. 19, 457–470.
40
Gamblin, T. C., Chen, F., Zambrano, A., Abraha, A., Lagalwar, S., Guillozet, A. L., Lu, M., Fu, Y., Garcia-Sierra, F., LaPointe, N., et al. (2003) Proc. Natl. Acad. Sci. USA 100, 10032–10037.
41
Mosesson, M. W., Siebenlist, K. R. & Meh, D. A. (2001) Ann. N.Y. Acad. Sci. 936, 11–30.
42
Taylor, K. M., Trimby, A. R. & Campbell, A. K. (1997) Immunology 91, 20–27.
43
Bourne, Y., Watson, M. H., Arvai, A. S., Bernstein, S. L., Reed, S. I. & Tainer, J. A. (2000) Struct. Fold. Des. 8, 841–850.
44
Hamazaki, T. S., Nagahama, Y., Iuchi, I. & Yamagami, K. (1989) Dev. Biol. 133, 101–110.
45
Hyllner, S. J. & Haux, C. (1992) J. Endocrinol. 135, 303–309.
46
Kanamori, A., Naruse, K., Mitani, H., Shima, A. & Hori, H. (2003) Gene 305, 35–45.
47
Doren, S., Landsberger, N., Dwyer, N., Gold, L., Blanchette-Mackie, J. & Dean, J. (1999) Dev. Genes Evol. 209, 330–339.
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2004, The National Academy of Sciences.
Submission history
Received: February 17, 2004
Published online: April 12, 2004
Published in issue: April 20, 2004
Acknowledgments
L.J. dedicates this paper to the memory of his father, Gian Jovine. We thank C. Darie and K. Quadrini for comments. Confocal microscopy was performed at the Mount Sinai School of Medicine Microscopy Shared Resource Facility. L.J. was supported by a Human Frontier Science Program long-term fellowship. This research was supported in part by National Institutes of Health Grant HD35105.
Authors
Metrics & Citations
Metrics
Altmetrics
Citations
Cite this article
A duplicated motif controls assembly of zona pellucida domain proteins, Proc. Natl. Acad. Sci. U.S.A.
101 (16) 5922-5927,
https://doi.org/10.1073/pnas.0401600101
(2004).
Copied!
Copying failed.
Export the article citation data by selecting a format from the list below and clicking Export.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.