A duplicated motif controls assembly of zona pellucida domain proteins

April 12, 2004
101 (16) 5922-5927

Abstract

Many secreted eukaryotic glycoproteins that play fundamental roles in development, hearing, immunity, and cancer polymerize into filaments and extracellular matrices through zona pellucida (ZP) domains. ZP domain proteins are synthesized as precursors containing C-terminal propeptides that are cleaved at conserved sites. However, the consequences of this processing and the mechanism by which nascent proteins assemble are unclear. By microinjection of mutated DNA constructs into growing oocytes and mammalian cell transfection, we have identified a conserved duplicated motif [EHP (external hydrophobic patch)/IHP (internal hydrophobic patch)] regulating the assembly of mouse ZP proteins. Whereas the transmembrane domain (TMD) of ZP3 can be functionally replaced by an unrelated TMD, mutations in either EHP or IHP do not hinder secretion of full-length ZP3 but completely abolish its assembly. Because mutants truncated before the TMD are not processed, we conclude that the conserved TMD of mammalian ZP proteins does not engage them in specific interactions but is essential for C-terminal processing. Cleavage of ZP precursors results in loss of the EHP, thereby activating secreted polypeptides to assemble by using the IHP within the ZP domain. Taken together, these findings suggest a general mechanism for assembly of ZP domain proteins.

Continue Reading

Acknowledgments

L.J. dedicates this paper to the memory of his father, Gian Jovine. We thank C. Darie and K. Quadrini for comments. Confocal microscopy was performed at the Mount Sinai School of Medicine Microscopy Shared Resource Facility. L.J. was supported by a Human Frontier Science Program long-term fellowship. This research was supported in part by National Institutes of Health Grant HD35105.

Supporting Information

Adobe PDF - 01600Fig5.pdf
Adobe PDF - 01600Fig5.pdf
Adobe PDF - 01600Fig6.pdf
Adobe PDF - 01600Fig6.pdf

References

1
Jovine, L., Qi, H., Williams, Z., Litscher, E. & Wassarman, P. M. (2002) Nat. Cell Biol. 4, 457–461.
2
Bork, P. & Sander, C. (1992) FEBS Lett. 300, 237–240.
3
Wassarman, P. M., Jovine, L. & Litscher, E. S. (2001) Nat. Cell Biol. 3, E59–E64.
4
Jovine, L., Litscher, E. & Wassarman, P. M. (2002) in Gene Expression at the Beginning of Animal Development, ed. DePamphilis, M. L. (Elsevier, Amsterdam), Vol. 12, pp. 31–54.
5
Litscher, E. S., Qi, H. & Wassarman, P. M. (1999) Biochemistry 38, 12280–12287.
6
Qi, H., Williams, Z. & Wassarman, P. M. (2002) Mol. Biol. Cell 13, 530–541.
7
Boja, E. S., Hoodbhoy, T., Fales, H. M. & Dean, J. (2003) J. Biol. Chem. 278, 34189–34202.
8
Yonezawa, N. & Nakano, M. (2003) Biochem. Biophys. Res. Commun. 307, 877–882.
9
Sugiyama, H., Murata, K., Iuchi, I., Nomura, K. & Yamagami, K. (1999) J. Biochem. (Tokyo) 125, 469–475.
10
Kubo, H., Matsushita, M., Kotani, M., Kawasaki, H., Saido, T. C., Kawashima, S., Katagiri, C. & Suzuki, A. (1999) Dev. Genet. 25, 123–129.
11
Sasanami, T., Pan, J., Doi, Y., Hisada, M., Kohsaka, T. & Toriyama, M. (2002) Eur. J. Biochem. 269, 2223–2231.
12
Killick, R., Legan, P. K., Malenczak, C. & Richardson, G. P. (1995) J. Cell Biol. 129, 535–547.
13
Fukuoka, S., Freedman, S. D., Yu, H., Sukhatme, V. P. & Scheele, G. A. (1992) Proc. Natl. Acad. Sci. USA 89, 1189–1193.
14
Sasaki, K., Sato, K., Akiyama, Y., Yanagihara, K., Oka, M. & Yamaguchi, K. (2002) Cancer Res. 62, 4894–4898.
15
Williams, Z. & Wassarman, P. M. (2001) Biochemistry 40, 929–937.
16
Kiefer, S. M. & Saling, P. (2002) Biol. Reprod. 66, 407–414.
17
Sasanami, T., Toriyama, M. & Mori, M. (2003) Biol. Reprod. 68, 1613–1619.
18
Steel, K. P. & Kros, C. J. (2001) Nat. Genet. 27, 143–149.
19
Marchuk, D. A., Srinivasan, S., Squire, T. L. & Zawistowski, J. S. (2003) Hum. Mol. Genet. 12, R97–R112.
20
Serafini-Cessi, F., Malagolini, N. & Cavallone, D. (2003) Am. J. Kidney Dis. 42, 658–676.
21
Kang, W. & Reid, K. B. (2003) FEBS Lett. 540, 21–25.
22
Copland, J. A., Luxon, B. A., Ajani, L., Maity, T., Campagnaro, E., Guo, H., LeGrand, S. N., Tamboli, P. & Wood, C. G. (2003) Oncogene 22, 8053–8062.
23
Harris, J., Seid, C., Fontenot, G. & Liu, H. (1999) Protein Expression Purif. 16, 298–307.
24
Boyd, D. & Beckwith, J. (1990) Cell 62, 1031–1033.
25
Locker, J. K. & Griffiths, G. (1999) J. Cell Biol. 144, 267–279.
26
Rozanov, D. V., Deryugina, E. I., Ratnikov, B. I., Monosov, E. Z., Marchenko, G. N., Quigley, J. P. & Strongin, A. Y. (2001) J. Biol. Chem. 276, 25705–25714.
27
Harrison, P. T. (1996) Mol. Membr. Biol. 13, 67–79.
28
Schanberg, L. E., Fleenor, D. E., Kurtzberg, J., Haynes, B. F. & Kaufman, R. E. (1991) Proc. Natl. Acad. Sci. USA 88, 603–607.
29
Hyllner, S. J., Westerlund, L., Olsson, P. E. & Schopen, A. (2001) Biol. Reprod. 64, 805–811.
30
Arukwe, A. & Goksøyr, A. (2003) Comp. Hepatol. 2, 4.
31
Sasanami, T., Pan, J. & Mori, M. (2003) J. Steroid Biochem. Mol. Biol. 84, 109–116.
32
Bausek, N., Waclawek, M., Schneider, W. J. & Wohlrab, F. (2000) J. Biol. Chem. 275, 28866–28872.
33
Zhao, M., Gold, L., Dorward, H., Liang, L. F., Hoodbhoy, T., Boja, E., Fales, H. M. & Dean, J. (2003) Mol. Cell. Biol. 23, 8982–8991.
34
Rosiere, T. K. & Wassarman, P. M. (1992) Dev. Biol. 154, 309–317.
35
Cocchia, M., Huber, R., Pantano, S., Chen, E. Y., Ma, P., Forabosco, A., Ko, M. S. & Schlessinger, D. (2000) Genomics 68, 305–312.
36
Yan, C., Pendola, F. L., Jacob, R., Lau, A. L., Eppig, J. J. & Matzuk, M. M. (2001) Genesis 31, 105–110.
37
Colomer, V., Lal, K., Hoops, T. C. & Rindler, M. J. (1994) EMBO J. 13, 3711–3719.
38
Xu, Z. G., Du, J. J., Zhang, X., Cheng, Z. H., Ma, Z. Z., Xiao, H. S., Yu, L., Wang, Z. Q., Li, Y. Y., Huo, K. K., et al. (2003) Hepatology 38, 735–744.
39
Handford, P. A., Downing, A. K., Reinhardt, D. P. & Sakai, L. Y. (2000) Matrix Biol. 19, 457–470.
40
Gamblin, T. C., Chen, F., Zambrano, A., Abraha, A., Lagalwar, S., Guillozet, A. L., Lu, M., Fu, Y., Garcia-Sierra, F., LaPointe, N., et al. (2003) Proc. Natl. Acad. Sci. USA 100, 10032–10037.
41
Mosesson, M. W., Siebenlist, K. R. & Meh, D. A. (2001) Ann. N.Y. Acad. Sci. 936, 11–30.
42
Taylor, K. M., Trimby, A. R. & Campbell, A. K. (1997) Immunology 91, 20–27.
43
Bourne, Y., Watson, M. H., Arvai, A. S., Bernstein, S. L., Reed, S. I. & Tainer, J. A. (2000) Struct. Fold. Des. 8, 841–850.
44
Hamazaki, T. S., Nagahama, Y., Iuchi, I. & Yamagami, K. (1989) Dev. Biol. 133, 101–110.
45
Hyllner, S. J. & Haux, C. (1992) J. Endocrinol. 135, 303–309.
46
Kanamori, A., Naruse, K., Mitani, H., Shima, A. & Hori, H. (2003) Gene 305, 35–45.
47
Doren, S., Landsberger, N., Dwyer, N., Gold, L., Blanchette-Mackie, J. & Dean, J. (1999) Dev. Genes Evol. 209, 330–339.

Information & Authors

Information

Published in

The cover image for PNAS Vol.101; No.16
Proceedings of the National Academy of Sciences
Vol. 101 | No. 16
April 20, 2004
PubMed: 15079052

Classifications

Submission history

Received: February 17, 2004
Published online: April 12, 2004
Published in issue: April 20, 2004

Acknowledgments

L.J. dedicates this paper to the memory of his father, Gian Jovine. We thank C. Darie and K. Quadrini for comments. Confocal microscopy was performed at the Mount Sinai School of Medicine Microscopy Shared Resource Facility. L.J. was supported by a Human Frontier Science Program long-term fellowship. This research was supported in part by National Institutes of Health Grant HD35105.

Authors

Affiliations

Luca Jovine
Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574
Huayu Qi*
Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574
Zev Williams
Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574
Eveline S. Litscher
Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574
Paul M. Wassarman
Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574

Notes

To whom correspondence should be addressed. E-mail: [email protected].
*
Present address: Department of Cardiovascular Research, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115.
Communicated by H. Ronald Kaback, University of California, Los Angeles, CA, March 5, 2004

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Altmetrics

Citations

Export the article citation data by selecting a format from the list below and clicking Export.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    A duplicated motif controls assembly of zona pellucida domain proteins
    Proceedings of the National Academy of Sciences
    • Vol. 101
    • No. 16
    • pp. 5697-6327

    Figures

    Tables

    Media

    Share

    Share

    Share article link

    Share on social media