One-dimensional hole gas in germanium/silicon nanowire heterostructures
Abstract
Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a “0.7 structure,” which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.
Acknowledgments
We thank C. Marcus, H. Park, and D. Reilly for helpful discussions. C.M.L. was supported by Intel, Defense Advanced Research Projects Agency, and the Army Research Office.
References
1
McEuen, P. L., Fuhrer, M. S. & Park, H. K. (2002) IEEE Trans. Nanotechnol. 1, 78-85.
2
Lieber, C. M. (2003) MRS Bull. 28, 486-491.
3
Samuelson, L. (2003) Mater. Today 6, 22-31.
4
Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F. & Lieber, C. M. (2001) Appl. Phys. Lett 78, 2214-2216.
5
Wu, Y., Cui, Y., Huynh, L., Barrelet, C. J., Bell, D. C. & Lieber, C. M. (2004) Nano Lett. 4, 433-436.
6
Yacoby, A., Stormer, H. L., Wingreen, N. S., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. (1996) Phys. Rev. Lett. 77, 4612-4615.
7
Bockrath, M., Cobden, D. H., Rinzler, A. G., Smalley, R. E., Balents, L. & McEuen, P. L. (1999) Nature 397, 598-601.
8
Liang, W. J., Bockrath, M., Bozovic, D., Hafner, J. H., Tinkham, M. & Park, H. (2001) Nature 411, 665-669.
9
Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M. & Dai, H. J. (2004) Phys. Rev. Lett. 92, 106804.
10
Biercuk, M. J., Mason, N., Martin, J., Yacoby, A. & Marcus, C. M. (2005) Phys. Rev. Lett. 94, 026801.
11
Dingle, R., Stormer, H. L., Gossard, A. C. & Wiegmann, W. (1978) Appl. Phys. Lett. 33, 665-667.
12
Schäffler, F. (1997) Semicond. Sci. Technol. 12, 1515-1549.
13
Beenakker, C. W. J. & van Houten, H. (1991) in Solid State Physics: Advances in Research and Applications, eds. Ehrenreich, H. & Turnbull, D. (Academic, San Diego), Vol. 44, pp. 109-125.
14
van Wees, B. J., Vanhouten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., Vandermarel, D. & Foxon, C. T. (1988) Phys. Rev. Lett. 60, 848-850.
15
Sohn, L. L., Kouwenhoven, L. P. & Schön, G. (1997) Mesoscopic Electron Transport (Kluwer, Dordecht, The Netherlands).
16
Van de Walle, C. G. & Martin, R. M. (1986) Phys. Rev. B 34, 5621-5634.
17
Lauhon, L. J., Gudiksen, M. S., Wang, C. L. & Lieber, C. M. (2002) Nature 420, 57-61.
18
Sze, S. M. (1981) Physics of Semiconductor Devices (Wiley, New York).
19
Grabert, H. & Devoret, M. H. (1992) Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York).
20
De Franceschi, S., van Dam, J. A., Bakkers, E. P. A. M., Feiner, L. F., Gurevich, L. & Kouwenhoven, L. P. (2003) Appl. Phys. Lett. 83, 344-346.
21
Tilke, A., Blick, R. H., Lorenz, H. & Kotthaus, J. P. (2001) J. Appl. Phys. 89, 8159-8162.
22
Zhong, Z., Fang, Y., Lu, W. & Lieber, C. M. (2005) Nano Lett. 5, 1143-1146.
23
Xie, Y. H., Monroe, D., Fitzgerald, E. A., Silverman, P. J., Thiel, F. A. & Watson, G. P. (1993) Appl. Phys. Lett. 63, 2263-2264.
24
Sakaki, H. (1980) Jpn. J. Appl. Phys. 19, L735-L738.
25
Hensel, J. C. & Suzuki, K. (1974) Phys. Rev. B 9, 4219-4257.
26
Park, J. Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Ustunel, H., Braig, S., Arias, T. A., Brouwer, P. W. & McEuen, P. L. (2004) Nano Lett. 4, 517-520.
27
McEuen, P. L., Bockrath, M., Cobden, D. H., Yoon, Y. G. & Louie, S. G. (1999) Phys. Rev. Lett. 83, 5098-5101.
28
Ando, T. & Nakanishi, T. (1998) J. Phys. Soc. Jpn. 67, 1704-1713.
29
Cronenwett, S. M., Lynch, H. J., Goldhaber-Gordon, D., Kouwenhoven, L. P., Marcus, C. M., Hirose, K., Wingreen, N. S. & Umansky, V. (2002) Phys. Rev. Lett. 88, 226805.
30
Kristensen, A., Bruus, H., Hansen, A. E., Jensen, J. B., Lindelof, P. E., Marckmann, C. J., Nygard, J., Sorensen, C. B., Beuscher, F., Forchel, A., et al. (2000) Phys. Rev. B 62, 10950-10957.
31
Tilke, A., Simmel, F. C., Lorenz, H., Blick, R. H. & Kotthaus, J. P. (2003) Phys. Rev. B 68, 075311.
32
Thomas, K. J., Nicholls, J. T., Simmons, M. Y., Pepper, M., Mace, D. R. & Ritchie, D. A. (1996) Phys. Rev. Lett. 77, 135-138.
33
Reilly, D. J., Buehler, T. M., O'Brien, J. L., Hamilton, A. R., Dzurak, A. S., Clark, R. G., Kane, B. E., Pfeiffer, L. N. & West, K. W. (2002) Phys. Rev. Lett. 89, 246801.
34
Shapira, S., Sivan, U., Soloman, P. M., Buchstab, E., Tischler, M. & Yoseph, G. B. (1996) Phys. Rev. Lett. 77, 3181-3184.
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2005, The National Academy of Sciences. Freely available online through the PNAS open access option.
Submission history
Published online: July 8, 2005
Published in issue: July 19, 2005
Keywords
Acknowledgments
We thank C. Marcus, H. Park, and D. Reilly for helpful discussions. C.M.L. was supported by Intel, Defense Advanced Research Projects Agency, and the Army Research Office.
Authors
Metrics & Citations
Metrics
Citation statements
Altmetrics
Citations
Cite this article
One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proc. Natl. Acad. Sci. U.S.A.
102 (29) 10046-10051,
https://doi.org/10.1073/pnas.0504581102
(2005).
Copied!
Copying failed.
Export the article citation data by selecting a format from the list below and clicking Export.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.