One-dimensional hole gas in germanium/silicon nanowire heterostructures

July 8, 2005
102 (29) 10046-10051

Abstract

Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a “0.7 structure,” which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.

Continue Reading

Acknowledgments

We thank C. Marcus, H. Park, and D. Reilly for helpful discussions. C.M.L. was supported by Intel, Defense Advanced Research Projects Agency, and the Army Research Office.

References

1
McEuen, P. L., Fuhrer, M. S. & Park, H. K. (2002) IEEE Trans. Nanotechnol. 1, 78-85.
2
Lieber, C. M. (2003) MRS Bull. 28, 486-491.
3
Samuelson, L. (2003) Mater. Today 6, 22-31.
4
Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F. & Lieber, C. M. (2001) Appl. Phys. Lett 78, 2214-2216.
5
Wu, Y., Cui, Y., Huynh, L., Barrelet, C. J., Bell, D. C. & Lieber, C. M. (2004) Nano Lett. 4, 433-436.
6
Yacoby, A., Stormer, H. L., Wingreen, N. S., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. (1996) Phys. Rev. Lett. 77, 4612-4615.
7
Bockrath, M., Cobden, D. H., Rinzler, A. G., Smalley, R. E., Balents, L. & McEuen, P. L. (1999) Nature 397, 598-601.
8
Liang, W. J., Bockrath, M., Bozovic, D., Hafner, J. H., Tinkham, M. & Park, H. (2001) Nature 411, 665-669.
9
Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M. & Dai, H. J. (2004) Phys. Rev. Lett. 92, 106804.
10
Biercuk, M. J., Mason, N., Martin, J., Yacoby, A. & Marcus, C. M. (2005) Phys. Rev. Lett. 94, 026801.
11
Dingle, R., Stormer, H. L., Gossard, A. C. & Wiegmann, W. (1978) Appl. Phys. Lett. 33, 665-667.
12
Schäffler, F. (1997) Semicond. Sci. Technol. 12, 1515-1549.
13
Beenakker, C. W. J. & van Houten, H. (1991) in Solid State Physics: Advances in Research and Applications, eds. Ehrenreich, H. & Turnbull, D. (Academic, San Diego), Vol. 44, pp. 109-125.
14
van Wees, B. J., Vanhouten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., Vandermarel, D. & Foxon, C. T. (1988) Phys. Rev. Lett. 60, 848-850.
15
Sohn, L. L., Kouwenhoven, L. P. & Schön, G. (1997) Mesoscopic Electron Transport (Kluwer, Dordecht, The Netherlands).
16
Van de Walle, C. G. & Martin, R. M. (1986) Phys. Rev. B 34, 5621-5634.
17
Lauhon, L. J., Gudiksen, M. S., Wang, C. L. & Lieber, C. M. (2002) Nature 420, 57-61.
18
Sze, S. M. (1981) Physics of Semiconductor Devices (Wiley, New York).
19
Grabert, H. & Devoret, M. H. (1992) Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York).
20
De Franceschi, S., van Dam, J. A., Bakkers, E. P. A. M., Feiner, L. F., Gurevich, L. & Kouwenhoven, L. P. (2003) Appl. Phys. Lett. 83, 344-346.
21
Tilke, A., Blick, R. H., Lorenz, H. & Kotthaus, J. P. (2001) J. Appl. Phys. 89, 8159-8162.
22
Zhong, Z., Fang, Y., Lu, W. & Lieber, C. M. (2005) Nano Lett. 5, 1143-1146.
23
Xie, Y. H., Monroe, D., Fitzgerald, E. A., Silverman, P. J., Thiel, F. A. & Watson, G. P. (1993) Appl. Phys. Lett. 63, 2263-2264.
24
Sakaki, H. (1980) Jpn. J. Appl. Phys. 19, L735-L738.
25
Hensel, J. C. & Suzuki, K. (1974) Phys. Rev. B 9, 4219-4257.
26
Park, J. Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Ustunel, H., Braig, S., Arias, T. A., Brouwer, P. W. & McEuen, P. L. (2004) Nano Lett. 4, 517-520.
27
McEuen, P. L., Bockrath, M., Cobden, D. H., Yoon, Y. G. & Louie, S. G. (1999) Phys. Rev. Lett. 83, 5098-5101.
28
Ando, T. & Nakanishi, T. (1998) J. Phys. Soc. Jpn. 67, 1704-1713.
29
Cronenwett, S. M., Lynch, H. J., Goldhaber-Gordon, D., Kouwenhoven, L. P., Marcus, C. M., Hirose, K., Wingreen, N. S. & Umansky, V. (2002) Phys. Rev. Lett. 88, 226805.
30
Kristensen, A., Bruus, H., Hansen, A. E., Jensen, J. B., Lindelof, P. E., Marckmann, C. J., Nygard, J., Sorensen, C. B., Beuscher, F., Forchel, A., et al. (2000) Phys. Rev. B 62, 10950-10957.
31
Tilke, A., Simmel, F. C., Lorenz, H., Blick, R. H. & Kotthaus, J. P. (2003) Phys. Rev. B 68, 075311.
32
Thomas, K. J., Nicholls, J. T., Simmons, M. Y., Pepper, M., Mace, D. R. & Ritchie, D. A. (1996) Phys. Rev. Lett. 77, 135-138.
33
Reilly, D. J., Buehler, T. M., O'Brien, J. L., Hamilton, A. R., Dzurak, A. S., Clark, R. G., Kane, B. E., Pfeiffer, L. N. & West, K. W. (2002) Phys. Rev. Lett. 89, 246801.
34
Shapira, S., Sivan, U., Soloman, P. M., Buchstab, E., Tischler, M. & Yoseph, G. B. (1996) Phys. Rev. Lett. 77, 3181-3184.

Information & Authors

Information

Published in

The cover image for PNAS Vol.102; No.29
Proceedings of the National Academy of Sciences
Vol. 102 | No. 29
July 19, 2005
PubMed: 16006507

Classifications

Submission history

Published online: July 8, 2005
Published in issue: July 19, 2005

Keywords

  1. ballistic transport
  2. bandstructure design
  3. conductance quantization
  4. nanoscience
  5. single-electron transistor

Acknowledgments

We thank C. Marcus, H. Park, and D. Reilly for helpful discussions. C.M.L. was supported by Intel, Defense Advanced Research Projects Agency, and the Army Research Office.

Authors

Affiliations

Wei Lu
Department of Chemistry and Chemical Biology and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Jie Xiang
Department of Chemistry and Chemical Biology and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Brian P. Timko
Department of Chemistry and Chemical Biology and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Yue Wu
Department of Chemistry and Chemical Biology and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Charles M. Lieber
Department of Chemistry and Chemical Biology and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

Notes

To whom correspondence should be sent at the † address. E-mail: [email protected].
W.L. and J.X. contributed equally to this work.
Contributed by Charles M. Lieber, June 2, 2005

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

Export the article citation data by selecting a format from the list below and clicking Export.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    One-dimensional hole gas in germanium/silicon nanowire heterostructures
    Proceedings of the National Academy of Sciences
    • Vol. 102
    • No. 29
    • pp. 9991-10405

    Figures

    Tables

    Media

    Share

    Share

    Share article link

    Share on social media