Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2

Edited by Richard L. Huganir, Johns Hopkins University School of Medicine, Baltimore, MD, and approved January 26, 2006
March 13, 2006
103 (12) 4753-4758

Abstract

Genetically encoded sensor proteins provide unique opportunities to advance the understanding of complex cellular interactions in physiologically relevant contexts; however, previously described sensors have proved to be of limited use to report cell signaling in vivo in mammals. Here, we describe an improved Ca2+ sensor, GCaMP2, its inducible expression in the mouse heart, and its use to examine signaling in heart cells in vivo. The high brightness and stability of GCaMP2 enable the measurement of myocyte Ca2+ transients in all regions of the beating mouse heart and prolonged pacing and mapping studies in isolated, perfused hearts. Transgene expression is efficiently temporally regulated in cardiomyocyte GCaMP2 mice, allowing recording of in vivo signals 4 weeks after transgene induction. High-resolution imaging of Ca2+ waves in GCaMP2-expressing embryos revealed key aspects of electrical conduction in the preseptated heart. At embryonic day (e.d.) 10.5, atrial and ventricular conduction occur rapidly, consistent with the early formation of specialized conduction pathways. However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue. Consistent with the elimination of the inner AV canal muscle layer at e.d. 13.5, atrioventricular conduction through the canal was abolished at this stage. These studies demonstrate that GCaMP2 will have broad utility in the dissection of numerous complex cellular interactions in mammals, in vivo.

Continue Reading

Data Availability

Data deposition: The sequence reported in this paper has been deposited in the GenBank database (accession no. DQ381402).

Acknowledgments

We thank Warren Zipfel, Mark Rishniw, and Geoffrey Eddlestone for helpful advice and Pat Fisher for immunocytochemistry. This work was supported by National Institutes of Health Grants HL45239, DK65992, and DK58795 (to M.I.K.) and HL69097, HL70722, and HL057929 (to G.S.), and a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to J.N.).

Supporting Information

09378Movie1.avi
09378Movie2.avi
09378Movie3.avi
09378Movie4.avi

References

1
M. J. Berridge, R. F. Irvine Nature 312, 315–321 (1984).
2
R. W. Tsien, R. Y. Tsien Annu. Rev. Cell Biol 6, 715–760 (1990).
3
M. D. Bootman, M. J. Berridge Cell 83, 675–678 (1995).
4
D. E. Clapham Cell 80, 259–268 (1995).
5
M. J. Berridge, M. D. Bootman, P. Lipp Nature 395, 645–648 (1998).
6
G. Grynkiewicz, M. Poenie, R. Y. Tsien J. Biol. Chem 260, 3440–3450 (1985).
7
J. Zhang, R. E. Campbell, A. Y. Ting, R. Y. Tsien Nat. Rev. Mol. Cell Biol 3, 906–918 (2002).
8
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien Nature 388, 882–887 (1997).
9
A. Miyawaki, O. Griesbeck, R. Heim, R. Y. Tsien Proc. Natl. Acad. Sci. USA 96, 2135–2140 (1999).
10
G. S. Baird, D. A. Zacharias, R. Y. Tsien Proc. Natl. Acad. Sci. USA 96, 11241–11246 (1999).
11
J. Nakai, M. Ohkura, K. Imoto Nat. Biotechnol 19, 137–141 (2001).
12
T. Nagai, A. Sawano, E. S. Park, A. Miyawaki Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).
13
N. Heim, O. Griesbeck J. Biol. Chem 279, 14280–14286 (2004).
14
R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, W. R. Schafer Neuron 26, 583–594 (2000).
15
S. I. Higashijima, M. A. Masino, G. Mandel, J. R. Fetcho J. Neurophysiol 90, 3986–3997 (2003).
16
A. Fiala, T. Spall Sci. STKE, 2003).
17
J. W. Wang, A. M. Wong, J. Flores, L. B. Vosshall, R. Axel Cell 112, 271–282 (2003).
18
G. Ji, M. Feldman, K. Y. Deng, K. S. Greene, J. Wilson, J. Lee, R. Johnston, M. Rishniw, Y. Tallini, J. Zhang, et al. J. Biol. Chem 279, 21461–21468 (2004).
19
M. T. Hasan, R. W. Friedrich, T. Euler, M. E. Larkum, G. Giese, M. Both, J. Duebel, J. Waters, H. Bujard, O. Griesbeck, et al. PLoS. Biol 2, 763–775 (2004).
20
T. Nagai, S. Yamada, T. Tominaga, M. Ichikawa, A. Miyawaki Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).
21
T. A. Pologruto, R. Yasuda, K. Svoboda J. Neurosci 24, 9572–9579 (2004).
22
O. Griesbeck, G. S. Baird, R. E. Campbell, D. A. Zacharias, R. Y. Tsien J. Biol. Chem 276, 29188–29194 (2001).
23
D. F. Reiff, A. Ihring, G. Guerrero, E. Y. Isacoff, M. Joesch, J. Nakai, A. Borst J. Neurosci 25, 4766–4778 (2005).
24
K. R. Siemering, R. Golbik, R. Sever, J. Haseloff Curr. Biol 6, 1653–1663 (1996).
25
D. A. Zacharias, J. D. Violin, A. C. Newton, R. Y. Tsien Science 296, 913–916 (2002).
26
M. Ohkura, M. Matsuzaki, H. Kasai, K. Imoto, J. Nakai Anal. Chem 77, 5861–5869 (2005).
27
J. Diez-Garcia, S. Matsushita, H. Mutoh, J. Nakai, M. Ohkura, J. Yokoyama, D. Dimitrov, T. Knopfel Eur. J. Neurosci 22, 627–635 (2005).
28
A. Sanbe, J. Gulick, M. C. Hanks, Q. Liang, H. Osinska, J. Robbins Circ. Res 92, 609–616 (2003).
29
K. L. Waldo, D. H. Kumiski, K. T. Wallis, H. A. Stadt, M. R. Hutson, D. H. Platt, M. L. Kirby Development (Cambridge, U.K.) 128, 3179–3188 (2001).
30
J. M. Colomer, M. Terasawa, A. R. Means Endocrinology 145, 1356–1366 (2004).
31
L. M. Loew, L. B. Cohen, J. Dix, E. N. Fluhler, V. Montana, G. Salama, W. Jian-young J. Membr. Biol 130, 1–10 (1992).
32
L. C. Baker, B. London, B. R. Choi, G. Koren, G. Salama Circ. Res 86, 396–407 (2000).
33
S. Rentschler, D. M. Vaidya, H. Tamaddon, K. Degenhardt, D. Sassoon, G. E. Morley, J. Jalife, G. I. Fishman Development (Cambridge, U.K.) 128, 1785–1792 (2001).
34
F. Rothenberg, V. P. Nikolski, M. Watanabe, I. R. Efimov Am. J. Physiol Heart Circ. Physiol 288, H344–H351 (2005).
35
S. Viragh, C. E. Challice Dev. Biol 56, 382–396 (1977).
36
F. de Jong, T. Opthof, A. A. Wilde, M. J. Janse, R. Charles, W. H. Lamers, A. F. Moorman Circ. Res 71, 240–250 (1992).
37
D. Franco, W. H. Lamers, A. F. Moorman Cardiovasc. Res 38, 25–53 (1998).
38
H. B. Xin, K. Y. Deng, M. Rishniw, G. Ji, M. I. Kotlikoff Physiol. Genomics 10, 211–215 (2002).
39
D. M. Bers, C. W. Patton, R. Nuccitelli Methods Cell Biol 40, 3–29 (1994).
40
L. C. Baker, R. Wolk, B. R. Choi, S. Watkins, P. Plan, A. Shah, G. Salama Am. J. Physiol Heart Circ. Physiol 287, H1771–H1779 (2004).

Information & Authors

Information

Published in

Go to Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences
Vol. 103 | No. 12
March 21, 2006
PubMed: 16537386

Classifications

Data Availability

Data deposition: The sequence reported in this paper has been deposited in the GenBank database (accession no. DQ381402).

Submission history

Received: October 27, 2005
Published online: March 13, 2006
Published in issue: March 21, 2006

Keywords

  1. atrioventricular node
  2. Ca2+ imaging
  3. genetic sensor
  4. heart development
  5. fluorescent Ca2+ sensor

Acknowledgments

We thank Warren Zipfel, Mark Rishniw, and Geoffrey Eddlestone for helpful advice and Pat Fisher for immunocytochemistry. This work was supported by National Institutes of Health Grants HL45239, DK65992, and DK58795 (to M.I.K.) and HL69097, HL70722, and HL057929 (to G.S.), and a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to J.N.).

Notes

This paper was submitted directly (Track II) to the PNAS office.

Authors

Affiliations

Yvonne N. Tallini
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;
Masamichi Ohkura
First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Yoshino, Nobeoka 882-8508, Japan; Departments of
Bum-Rak Choi
Cell Biology and Physiology and
Guangju Ji
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;
Keiji Imoto
Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan;
Robert Doran
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;
Jane Lee
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;
Patricia Plan
Cell Biology and Physiology and
Jason Wilson
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;
Hong-Bo Xin
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;
Atsushi Sanbe
Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
James Gulick
Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
John Mathai
Medicine, University of Pittsburgh School of Medicine, Room S 314 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261;
Jeffrey Robbins
Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
Guy Salama
Cell Biology and Physiology and
Junichi Nakai
Laboratory for Memory and Learning, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
Michael I. Kotlikoff‡‡ [email protected]
Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850;

Notes

‡‡
To whom correspondence should be addressed. E-mail: [email protected]
Y.N.T., M.O., and B.-R.C. contributed equally to this work.
Author contributions: H.-B.X., G.S., Y.N.T., B.-R.C., J.N., and M.I.K. designed research; Y.N.T., M.O., B.-R.C., G.J., R.D., J.L., P.P., J.W., J.M., G.S., J.N., and M.I.K. performed research; M.O., K.I., J.L., H.-B.X., A.S., J.G., J.R., and J.N. contributed new reagents/analytic tools; B.-R.C., R.D., J.M., G.S., and M.I.K. analyzed data; and M.I.K. wrote the paper.

Competing Interests

Conflict of interest statement: No conflicts declared.

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Get Access

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2
    Proceedings of the National Academy of Sciences
    • Vol. 103
    • No. 12
    • pp. 4331-4793

    Media

    Figures

    Tables

    Other

    Share

    Share

    Share article link

    Share on social media