Sequential structure of neocortical spontaneous activity in vivo

Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved November 7, 2006
January 2, 2007
104 (1) 347-352

Abstract

Even in the absence of sensory stimulation, the neocortex shows complex spontaneous activity patterns, often consisting of alternating “DOWN” states of generalized neural silence and “UP” states of massive, persistent network activity. To investigate how this spontaneous activity propagates through neuronal assemblies in vivo, we simultaneously recorded populations of 50–200 cortical neurons in layer V of anesthetized and awake rats. Each neuron displayed a virtually unique spike pattern during UP states, with diversity seen amongst both putative pyramidal cells and interneurons, reflecting a complex but stereotypically organized sequential spread of activation through local cortical networks. Spike timing was most precise during the first ≈100 ms after UP state onset, and decayed as UP states progressed. A subset of UP states propagated as traveling waves, but waves passing a given point in either direction initiated similar local sequences, suggesting local networks as the substrate of sequential firing patterns. A search for repeating motifs indicated that their occurrence and structure was predictable from neurons' individual latencies to UP state onset. We suggest that these stereotyped patterns arise from the interplay of intrinsic cellular conductances and local circuit properties.

Continue Reading

Acknowledgments

This work was supported by National Institutes of Health Grant R01MH073245 and the Alfred P. Sloan Foundation.

Supporting Information

Adobe PDF - 05643Fig6.pdf
Adobe PDF - 05643Fig6.pdf
Adobe PDF - 05643Fig7.pdf
Adobe PDF - 05643Fig7.pdf
Adobe PDF - 05643Fig8.pdf
Adobe PDF - 05643Fig8.pdf
Image580.gif
Image581.gif

References

1
J Watts, AM Thomson J Physiol 562, 89–97 (2005).
2
P Somogyi, G Tamas, R Lujan, EH Buhl Brain Res Rev 26, 113–135 (1998).
3
RJ Douglas, KA Martin Annu Rev Neurosci 27, 419–451 (2004).
4
DO Hebb The Organization of Behavior (Wiley, New York, 1949).
5
KD Harris, J Csicsvari, H Hirase, G Dragoi, G Buzsaki Nature 424, 552–556 (2003).
6
A Luczak, TA Hackett, Y Kajikawa, M Laubach J Neurosci Methods 136, 77–85 (2004).
7
KD Harris Nat Rev Neurosci 6, 399–407 (2005).
8
G Buzsaki Neuroscience 31, 551–570 (1989).
9
M Steriade, I Timofeev, F Grenier J Neurophysiol 85, 1969–1985 (2001).
10
R Huber, MF Ghilardi, M Massimini, G Tononi Nature 430, 78–81 (2004).
11
KL Hoffman, BL McNaughton Science 297, 2070–2073 (2002).
12
A Sirota, J Csicsvari, D Buhl, G Buzsáki Proc Natl Acad Sci USA 100, 2065–2069 (2003).
13
M Steriade, A Nunez, F Amzica J Neurosci 13, 3252–3265 (1993).
14
T Kenet, D Bibitchkov, M Tsodyks, A Grinvald, A Arieli Nature 425, 954–956 (2003).
15
JND Kerr, D Greenberg, F Helmchen Proc Natl Acad Sci USA 102, 14063–14068 (2005).
16
R Cossart, D Aronov, R Yuste Nature 423, 283–288 (2003).
17
BQ Mao, F Hamzei-Sichani, D Aronov, RC Froemke, R Yuste Neuron 32, 883–898 (2001).
18
Y Ikegaya, G Aaron, R Cossart, D Aronov, I Lampl, D Ferster, R Yuste Science 304, 559–564 (2004).
19
MV Sanchez-Vives, DA McCormick Nat Neurosci 3, 1027–1034 (2000).
20
YS Shu, A Hasenstaub, DA McCormick Nature 423, 288–293 (2003).
21
JN MacLean, BO Watson, GB Aaron, R Yuste Neuron 48, 811–823 (2005).
22
WH Meck Functional and Neural Mechanisms of Interval Timing (CRC, Boca Raton, FL, 2003).
23
CCH Petersen, TTG Hahn, M Mehta, A Grinvald, B Sakmann Proc Natl Acad Sci USA 100, 13638–13643 (2003).
24
P Bartho, H Hirase, L Monconduit, M Zugaro, KD Harris, G Buzsaki J Neurophysiol 92, 600–608 (2004).
25
M Massimini, R Huber, F Ferrarelli, S Hill, G Tononi J Neurosci 24, 6862–6870 (2004).
26
JC Prechtl, LB Cohen, B Pesaran, PP Mitra, D Kleinfeld Proc Natl Acad Sci USA 94, 7621–7626 (1997).
27
DM Senseman, KA Robbins J Neurophysiol 87, 1499–1514 (2002).
28
ZF Mainen, TJ Sejnowski Science 268, 1503–1506 (1995).
29
GT Buracas, AM Zador, MR DeWeese, TD Albright Neuron 20, 959–969 (1998).
30
S Schreiber, JM Fellous, D Whitmer, P Tiesinga, TJ Sejnowski Neurocomputing 52-54, 925–931 (2003).
31
M Abeles, GL Gerstein J Neurophysiol 60, 909–924 (1988).
32
Y Prut, E Vaadia, H Bergman, I Haalman, H Slovin, M Abeles J Neurophysiol 79, 2857–2874 (1998).
33
MW Oram, NG Hatsopoulos, BJ Richmond, JP Donoghue J Neurophysiol 86, 1700–1716 (2001).
34
SN Baker, RN Lemon J Neurophysiol 84, 1770–1780 (2000).
35
M Abeles, I Gat J Neurosci Methods 107, 141–154 (2001).
36
DV Buonomano Proc Natl Acad Sci USA 100, 4897–4902 (2003).
37
J Gibbon, C Malapani, CL Dale, C Gallistel Curr Opin Neurobiol 7, 170–184 (1997).
38
Z Gil, BW Connors, Y Amitai Neuron 19, 679–686 (1997).
39
ME Hasselmo Behav Brain Res 67, 1–27 (1995).
40
MA Castro-Alamancos Prog Neurobiol 74, 213–247 (2004).
41
ZF Mainen, TJ Sejnowski Nature 382, 363–366 (1996).
42
P Schwindt, JA Obrien, W Crill J Neurophysiol 77, 2484–2498 (1997).
43
Y Yoshimura, JL Dantzker, EM Callaway Nature 433, 868–873 (2005).
44
Y Wang, H Markram, PH Goodman, TK Berger, J Ma, PS Goldman-Rakic Nat Neurosci 9, 534–542 (2006).
45
JF van Brederode, WJ Spain J Neurophysiol 74, 1149–1166 (1995).
46
BJ Hefti, PH Smith J Neurophysiol 83, 2626–2638 (2000).
47
Y Yoshimura, EM Callaway Nat Neurosci 8, 1552–1559 (2005).
48
I Lampl, I Reichova, D Ferster Neuron 22, 361–374 (1999).
49
M Volgushev, S Chauvette, M Mukovski, I Timofeev J Neurosci 26, 5665–5672 (2006).
50
EM Izhikevich, JA Gally, GM Edelman Cereb Cortex 14, 933–944 (2004).
51
A Destexhe, M Rudolph, D Pare Nat Rev Neurosci 4, 739–751 (2003).
52
M Abeles Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge Univ Press, Cambridge, UK, 1991).
53
M Diesmann, MO Gewaltig, A Aertsen Nature 402, 529–533 (1999).
54
E Grastyan, ER John, F Bartlett Science 201, 169–171 (1978).
55
Y Sugase, S Yamane, S Ueno, K Kawano Nature 400, 869–873 (1999).
56
SL Brincat, CE Connor Neuron 49, 17–24 (2006).
57
KD Harris, DA Henze, J Csicsvari, H Hirase, G Buzsaki J Neurophysiol 84, 401–414 (2000).
58
N Schmitzer-Torbert, J Jackson, D Henze, K Harris, AD Redish Neurosci 131, 1–11 (2005).

Information & Authors

Information

Published in

Go to Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences
Vol. 104 | No. 1
January 2, 2007
PubMed: 17185420

Classifications

Submission history

Received: July 5, 2006
Published online: January 2, 2007
Published in issue: January 2, 2007

Keywords

  1. neuronal assembly
  2. repeating sequences
  3. slow oscillations
  4. syntire chains
  5. microcircuits

Acknowledgments

This work was supported by National Institutes of Health Grant R01MH073245 and the Alfred P. Sloan Foundation.

Notes

This article is a PNAS direct submission.
This article contains supporting information online at www.pnas.org/cgi/content/full/0605643104/DC1.

Authors

Affiliations

Artur Luczak
Center for Molecular and Behavioral Science, Rutgers University, Newark, NJ 07102
Peter Barthó
Center for Molecular and Behavioral Science, Rutgers University, Newark, NJ 07102
Stephan L. Marguet
Center for Molecular and Behavioral Science, Rutgers University, Newark, NJ 07102
György Buzsáki
Center for Molecular and Behavioral Science, Rutgers University, Newark, NJ 07102
Kenneth D. Harris [email protected]
Center for Molecular and Behavioral Science, Rutgers University, Newark, NJ 07102

Notes

*To whom correspondence should be addressed. E-mail: [email protected]
Author contributions: A.L., P.B., G.B., and K.D.H. designed research; A.L. and P.B. performed research; S.L.M. contributed new reagents/analytic tools; A.L. and K.D.H. analyzed data; and A.L. and K.D.H. wrote the paper.

Competing Interests

The authors declare no conflict of interest.

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Get Access

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    Sequential structure of neocortical spontaneous activity in vivo
    Proceedings of the National Academy of Sciences
    • Vol. 104
    • No. 1
    • pp. 1-395

    Media

    Figures

    Tables

    Other

    Share

    Share

    Share article link

    Share on social media