Genomic analysis of human microRNA transcripts

Edited by Michael S. Waterman, University of Southern California, Los Angeles, CA, and approved August 28, 2007
November 6, 2007
104 (45) 17719-17724

Abstract

MicroRNAs (miRNAs) are important genetic regulators of development, differentiation, growth, and metabolism. The mammalian genome encodes ≈500 known miRNA genes. Approximately 50% are expressed from non-protein-coding transcripts, whereas the rest are located mostly in the introns of coding genes. Intronic miRNAs are generally transcribed coincidentally with their host genes. However, the nature of the primary transcript of intergenic miRNAs is largely unknown. We have performed a large-scale analysis of transcription start sites, polyadenylation signals, CpG islands, EST data, transcription factor-binding sites, and expression ditag data surrounding intergenic miRNAs in the human genome to improve our understanding of the structure of their primary transcripts. We show that a significant fraction of primary transcripts of intergenic miRNAs are 3–4 kb in length, with clearly defined 5′ and 3′ boundaries. We provide strong evidence for the complete transcript structure of a small number of human miRNAs.

Continue Reading

Acknowledgments

We thank members of Team101 at the Wellcome Trust Sanger Institute for useful discussion and advice. H.K.S. was supported by a Glaxo-SmithKline postdoctoral fellowship. S.G.-J. was supported by the Wellcome Trust and the University of Manchester, and A.J.E. was supported by the Wellcome Trust.

Supporting Information

Adobe PDF - 03890Fig3.pdf
Adobe PDF - 03890Fig3.pdf
Adobe PDF - 03890Fig4.pdf
Adobe PDF - 03890Fig4.pdf
Adobe PDF - 03890Fig5.pdf
Adobe PDF - 03890Fig5.pdf
Adobe PDF - 03890Fig6.pdf
Adobe PDF - 03890Fig6.pdf
Adobe PDF - 03890Table_3.pdf
Adobe PDF - 03890Table_3.pdf
Adobe PDF - 03890Table_4.pdf
Adobe PDF - 03890Table_4.pdf
Adobe PDF - 03890Table_5.pdf
Adobe PDF - 03890Table_5.pdf
Adobe PDF - 03890Table_6.pdf
Adobe PDF - 03890Table_6.pdf
Adobe PDF - 03890Table_7.pdf
Adobe PDF - 03890Table_7.pdf

References

1
DP Bartel Cell 116, 281–297 (2004).
2
AE Pasquinelli, S Hunter, J Bracht Curr Opin Genet Dev 15, 200–205 (2005).
3
B Wightman, I Ha, G Ruvkun Cell 75, 855–862 (1993).
4
AJ Giraldez, Y Mishima, J Rihel, RJ Grocock, S Van Dongen, K Inoue, AJ Enright, AF Schier Science 312, 75–79 (2006).
5
BP Lewis, IH Shih, MW Jones-Rhoades, DP Bartel, CB Burge Cell 115, 787–798 (2003).
6
AJ Enright, B John, U Gaul, T Tuschl, C Sander, DS Marks Genome Biol 5, R1 (2003).
7
I Alvarez-Garcia, EA Miska Development (Cambridge, UK) 132, 4653–4662 (2005).
8
GA Calin, CD Dumitru, M Shimizu, R Bichi, S Zupo, E Noch, H Aldler, S Rattan, M Keating, K Rai, et al. Proc Natl Acad Sci USA 99, 15524–15529 (2002).
9
AA Caudy, M Myers, GJ Hannon, SM Hammond Genes Dev 16, 2491–2496 (2002).
10
MT McManus Semin Cancer Biol 13, 253–258 (2003).
11
GA Calin, C Sevignani, CD Dumitru, T Hyslop, E Noch, S Yendamuri, M Shimizu, S Rattan, F Bullrich, M Negrini, CM Croce Proc Natl Acad Sci USA 101, 2999–3004 (2004).
12
GA Calin, M Ferracin, A Cimmino, G Di Leva, M Shimizu, SE Wojcik, MV Iorio, R Visone, NI Sever, M Fabbri, et al. N Engl J Med 353, 1793–1801 (2005).
13
M Lagos-Quintana, R Rauhut, A Yalcin, J Meyer, W Lendeckel, T Tuschl Curr Biol 12, 735–739 (2002).
14
J Lu, G Getz, EA Miska, E Alvarez-Saavedra, J Lamb, D Peck, A Sweet-Cordero, BL Ebert, RH Mak, AA Ferrando, et al. Nature 435, 834–838 (2005).
15
Y Lee, K Jeon, JT Lee, S Kim, VN Kim EMBO J 21, 4663–4670 (2002).
16
BR Cullen Mol Cell 16, 861–865 (2004).
17
X Cai, CH Hagedorn, BR Cullen RNA 10, 1957–1966 (2004).
18
Y Lee, M Kim, J Han, KH Yeom, S Lee, SH Baek, VN Kim EMBO J 23, 4051–4060 (2004).
19
A Rodriguez, S Griffiths-Jones, JL Ashurst, A Bradley Genome Res 14, 1902–1910 (2004).
20
J Bracht, S Hunter, R Eachus, P Weeks, AE Pasquinelli RNA 10, 1586–1594 (2004).
21
HB Houbaviy, L Dennis, R Jaenisch, PA Sharp RNA 11, 1245–1257 (2005).
22
GM Borchert, W Lanier, BL Davidson Nat Struct Mol Biol 13, 1097–1101 (2006).
23
J Gu, T He, Y Pei, F Li, X Wang, J Zhang, X Zhang, Y Li Mamm Genome 17, 1033–1041 (2006).
24
X Zhou, J Ruan, G Wang, W Zhang PLoS Comput Biol 3, e37 (2007).
25
GD Stormo Genome Res 10, 394–397 (2000).
26
TA Down, TJ Hubbard Genome Res 12, 458–461 (2002).
27
Y Altuvia, P Landgraf, G Lithwick, N Elefant, S Pfeffer, A Aravin, MJ Brownstein, T Tuschl, H Margalit Nucleic Acids Res 33, 2697–2706 (2005).
28
AP Bird Nature 321, 209–213 (1986).
29
A Lujambio, S Ropero, E Ballestar, MF Fraga, C Cerrato, F Setien, S Casado, A Suarez-Gauthier, M Sanchez-Cespedes, A Gitt, et al. Cancer Res 67, 1424–1429 (2007).
30
Y Saito, G Liang, G Egger, JM Friedman, JC Chuang, GA Coetzee, PA Jones Cancer Cell 9, 435–443 (2006).
31
O Barad, E Meiri, A Avniel, R Aharonov, A Barzilai, I Bentwich, U Einav, S Gilad, P Hurban, Y Karov, et al. Genome Res 14, 2486–2494 (2004).
32
LF Sempere, S Freemantle, I Pitha-Rowe, E Moss, E Dmitrovsky, V Ambros Genome Biol 5, R13 (2004).
33
KD Pruitt, T Tatusova, DR Maglott Nucleic Acids Res 33, D501–D504 (2005).
34
D Karolchik, R Baertsch, M Diekhans, TS Furey, A Hinrichs, YT Lu, KM Roskin, M Schwartz, CW Sugnet, DJ Thomas, et al. Nucleic Acids Res 31, 51–54 (2003).
35
P Sethupathy, M Megraw, MI Barrasa, AG Hatzifeorgiou Lecture Notes Comput Sci 3746, 457–468 (2005).
36
X Xie, J Lu, EJ Kulbokas, TR Golub, V Mootha, K Lindblad-Toh, ES Lander, M Kellis Nature 434, 338–345 (2005).
37
H Liu, H Han, J Li, L Wong Bioinformatics 21, 671–673 (2005).
38
P Ng, CL Wei, WK Sung, KP Chiu, L Lipovich, CC Ang, S Gupta, A Shahab, A Ridwan, CH Wong, et al. Nat Methods 2, 105–111 (2005).
39
BA Peters, VE Velculescu Nat Methods 2, 93–94 (2005).
40
S Griffiths-Jones, RJ Grocock, S van Dongen, A Bateman, AJ Enright Nucleic Acids Res 34, D140–D144 (2006).
41
E Birney, D Andrews, M Caccamo, Y Chen, L Clarke, G Coates, T Cox, F Cunningham, V Curwen, T Cutts, et al. Nucleic Acids Res 34, D556–D561 (2006).
42
A Stabenau, G McVicker, C Melsopp, G Proctor, M Clamp, E Birney Genome Res 14, 929–933 (2004).
43
V Matys, E Fricke, R Geffers, E Gossling, M Haubrock, R Hehl, K Hornischer, D Karas, AE Kel, OV Kel-Margoulis, et al. Nucleic Acids Res 31, 374–378 (2003).
44
AS Hinrichs, D Karolchik, R Baertsch, GP Barber, G Bejerano, H Clawson, M Diekhans, TS Furey, RA Harte, F Hsu, et al. Nucleic Acids Res 34, D590–D598 (2006).

Information & Authors

Information

Published in

The cover image for PNAS Vol.104; No.45
Proceedings of the National Academy of Sciences
Vol. 104 | No. 45
November 6, 2007
PubMed: 17965236

Classifications

Submission history

Received: April 30, 2007
Published online: November 6, 2007
Published in issue: November 6, 2007

Acknowledgments

We thank members of Team101 at the Wellcome Trust Sanger Institute for useful discussion and advice. H.K.S. was supported by a Glaxo-SmithKline postdoctoral fellowship. S.G.-J. was supported by the Wellcome Trust and the University of Manchester, and A.J.E. was supported by the Wellcome Trust.

Notes

This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/cgi/content/full/0703890104/DC1.

Authors

Affiliations

Harpreet Kaur Saini
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom;
Sam Griffiths-Jones [email protected]
Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
Anton James Enright§ [email protected]
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom;

Notes

To whom correspondence may be addressed. E-mail: [email protected]
§
To whom correspondence may be addressed. E-mail: [email protected]
Author contributions: H.K.S., S.G.-J., and A.J.E. designed research; H.K.S. performed research; H.K.S. analyzed data; and H.K.S., S.G.-J., and A.J.E. wrote the paper.

Competing Interests

The authors declare no conflict of interest.

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Altmetrics

Citations

Export the article citation data by selecting a format from the list below and clicking Export.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    Genomic analysis of human microRNA transcripts
    Proceedings of the National Academy of Sciences
    • Vol. 104
    • No. 45
    • pp. 17557-17897

    Figures

    Tables

    Media

    Share

    Share

    Share article link

    Share on social media