Giant pressure-induced volume collapse in the pyrite mineral MnS2

Edited by Roald Hoffmann, Cornell University, Ithaca, NY, and approved February 14, 2014 (received for review October 6, 2013)
March 24, 2014
111 (14) 5106-5110

Significance

Minerals that contain magnetic metals may collapse under the pressures found in the Earth’s mantle. These so-called spin-state transitions are due to the reduction of the magnetic moment associated with each metal atom. Here we report the discovery of a giant volume collapse in the mineral hauerite (MnS2) under pressure. Instead of a change in the single-ion magnetic moments, this is driven by the Mn2+ cations spontaneously forming pairs, or dimers. In contrast to the magnetic, unpaired electrons found at ambient pressure, the dense new phase contains an ordered arrangement of chemical bonds that are globally nonmagnetic. This “squeezing out” of magnetism is shown to stabilize the huge increase in density.

Abstract

Dramatic volume collapses under pressure are fundamental to geochemistry and of increasing importance to fields as diverse as hydrogen storage and high-temperature superconductivity. In transition metal materials, collapses are usually driven by so-called spin-state transitions, the interplay between the single-ion crystal field and the size of the magnetic moment. Here we show that the classical mineral hauerite (MnS2) undergoes an unprecedented collapse driven by a conceptually different magnetic mechanism. Using synchrotron X-ray diffraction we show that cold compression induces the formation of a disordered intermediate. However, using an evolutionary algorithm we predict a new structure with edge-sharing chains. This is confirmed as the thermodynamic ground state using in situ laser heating. We show that magnetism is globally absent in the new phase, as low-spin quantum moments are quenched by dimerization. Our results show how the emergence of metal–metal bonding can stabilize giant spin-lattice coupling in Earth’s minerals.

Continue Reading

Acknowledgments

We acknowledge M. Hanfland for assistance on ID9A. We thank E. Gregoryanz, J. S. Loveday, W. Crichton, and P. Bouvier for useful discussions. The Beilstein Institut (through Nanobic) and Deutsche Forschungsgemeinschaft provided financial support through Grant SFB/TR49 (to H.O.J., K.M., M.T., F.S.-P., and R.V.). We also gratefully acknowledge the Centre for Scientific Computing in Frankfurt for computing facilities. We thank the ESRF, Grenoble, and BESSY-II, Berlin for access to synchrotron facilities.

Supporting Information

Supporting Information (PDF)
Supporting Information

References

1
RE Cohen, II Mazin, DG Isaak, Magnetic collapse in transition metal oxides at high pressure: Implications for the Earth. Science 275, 654–657 (1997).
2
J-F Lin, T Tsuchiya, Spin transition of iron in the Earth’s lower mantle. Phys. Earth Plan Inter 170, 248–259 (2008).
3
S Ono, T Kikegawa, Y Ohishi, High-pressure phase transition of hematite, Fe2O3 J. Phys Chem Solids 65, 1527–1530 (2004).
4
B Lavina, et al., Structure of siderite FeCO3 to 50 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82, 064110 (2010).
5
J Kunes, AV Lukoyanov, VI Anisimov, RT Scalettar, WE Pickett, Collapse of magnetic moment drives the Mott transition in MnO. Nat Mater 7, 198–202 (2008).
6
JW Allen, RM Martin, Kondo volume collapse and the γ-α transition in Cerium. Phys Rev Lett 49, 1106–1110 (1982).
7
P Vajeeston, P Ravindran, R Vidya, R Fjellvag, A Kjekshus, Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage. Phys Rev B 68, 212101 (2003).
8
A Kreyssig, et al., Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering. Phys Rev B 78, 184517 (2008).
9
W Xiao, D Tan, X Xiong, J Liu, J Xu, Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite. Proc Natl Acad Sci USA 107, 14026–14029 (2010).
10
JM Hastings, N Elliot, LM Corliss, Antiferromagnetic structures of MnS2, MnSe2, and MnTe2. Phys Rev 115, 13–17 (1959).
11
T Chattopadhyay, HG von Schnering, High pressure x-ray diffraction study on p-FeS2, m-FeS2 and MnS2 to 340 kbar: A possible high spin-low spin transition in MnS2. J Phys Chem Solids 46, 113–116 (1985).
12
T Chattopadhyay, HG von Schnering, WA Grosshans, High pressure x-ray diffraction study on the structural phase transition in MnS2. Physica B 139-140, 305–307 (1986).
13
K Momma, F Izumi, VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 41, 653–658 (2008).
14
K Persson, G Ceder, D Morgan, Spin transitions in the FexMn1−xS2 system. Phys Rev B 73, 115201 (2006).
15
VA Solé, E Papillon, M Cotte, Ph Walter, J Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spec Acta B 1, 305–307 (2007).
16
AR Oganov, CW Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J Chem Phys 124, 244704 (2006).
17
CW Glass, AR Oganov, N Hansen, USPEX—Evolutionary crystal structure prediction. Comput Phys Commun 175, 713–720 (2006).
18
G Kresse, J Hafner, Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 47, 558–561 (1993).
19
G Kresse, J Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 54, 11169–11186 (1996).
20
G Kresse, J Hafner, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 15 (1996).
21
PE Blöchl, Projector augmented-wave method. Phys Rev B Condens Matter 50, 17953–17979 (1994).
22
JP Perdew, K Burke, M Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996).
23
K Muthukumar, R Valentí, HO Jeschke, Simulation of structural and electronic properties of amorphous tungsten oxycarbides. New J Phys 14, 113028 (2012).
24
AC Larson, RB Von Dreele, General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR. 86-748. (2000).
25
P Blaha, K Schwartz, GKH Madsen, D Kvasnicka, J Luitz, (2001) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Scwarz, Techn. Universität Wien, Vienna).
26
K Koepernick, H Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys Rev B 59, 1743 (1999).
27
AK Arora, Pressure-induced amorphization versus decomposition. Solid State Commun 115, 665–668 (2000).
28
T Siegrist, F Hulliger, High-temperature behaviour of CoAs2 and CoSb2. J Solid State Chem 63, 23–30 (1986).
29
SD Wijeyesekera, R Hoffmann, Marcasites and arsenopyrites: Structure, bonding, and electronic properties. Inorg Chem 22, 3287–3300 (1983).
30
M Schmidt, et al., Spin singlet formation in MgTi2O4: Evidence of a helical dimerization pattern. Phys Rev Lett 92, 056402 (2004).
31
MB Stone, et al., Quasi-one-dimensional magnons in an intermetallic marcasite. Phys Rev Lett 108, 167202 (2012).
32
Y Tokura, N Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).
33
A Dewaele, P Loubeyre, M Mezouar, Equations of state of six metals above 94 GPa. Phys Rev B 70, 094112 (2004).

Information & Authors

Information

Published in

Go to Proceedings of the National Academy of Sciences
Go to Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences
Vol. 111 | No. 14
April 8, 2014
PubMed: 24706831

Classifications

Submission history

Published online: March 24, 2014
Published in issue: April 8, 2014

Acknowledgments

We acknowledge M. Hanfland for assistance on ID9A. We thank E. Gregoryanz, J. S. Loveday, W. Crichton, and P. Bouvier for useful discussions. The Beilstein Institut (through Nanobic) and Deutsche Forschungsgemeinschaft provided financial support through Grant SFB/TR49 (to H.O.J., K.M., M.T., F.S.-P., and R.V.). We also gratefully acknowledge the Centre for Scientific Computing in Frankfurt for computing facilities. We thank the ESRF, Grenoble, and BESSY-II, Berlin for access to synchrotron facilities.

Notes

This article is a PNAS Direct Submission.

Authors

Affiliations

Simon A. J. Kimber2,1 [email protected]
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France;
Ashkan Salamat2,1 [email protected]
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France;
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138;
Shaun R. Evans
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France;
Departement für Chemie und Biochemie, Universität Bern, CH-3012 Bern, Switzerland;
Harald O. Jeschke2,1 [email protected]
Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany;
Kaliappan Muthukumar
Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany;
Milan Tomić
Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany;
Francesc Salvat-Pujol
Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany;
Roser Valentí
Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany;
Maria V. Kaisheva
School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom;
Ivo Zizak
Helmholtz-Zentrum Berlin für Materialien und Energie, Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung-II, Wilhelm Conrad Röntgen Campus, 12489 Berlin, Germany; and
Tapan Chatterji
Institut Max von Laue-Paul Langevin, BP 156, F-38042 Grenoble Cedex 9, France

Notes

2
To whom correspondence may be addressed. E-mail: [email protected], [email protected], or [email protected].
Author contributions: S.A.J.K., A.S., H.O.J., R.V., and T.C. designed research; S.A.J.K., A.S., S.R.E., H.O.J., K.M., M.T., F.S.-P., R.V., and I.Z. performed research; S.A.J.K., A.S., S.R.E., H.O.J., K.M., M.T., F.S.-P., R.V., and M.V.K. analyzed data; H.O.J. and R.V. contributed new reagents/analytic tools; and S.A.J.K., A.S., H.O.J., and R.V. wrote the paper.
1
S.A.J.K., A.S., and H.O.J. contributed equally to this work.

Competing Interests

The authors declare no conflict of interest.

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Get Access

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to get full access to it.

    Single Article Purchase

    Giant pressure-induced volume collapse in the pyrite mineral MnS2
    Proceedings of the National Academy of Sciences
    • Vol. 111
    • No. 14
    • pp. 5061-5444

    Media

    Figures

    Tables

    Other

    Share

    Share

    Share article link

    Share on social media