Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina
Edited by Claude Desplan, New York University, New York, NY, and approved September 11, 2019 (received for review June 24, 2019)
Significance
Insect compound eyes are a random array of 2 or more subtypes of optical units, the ommatidia. Some ommatidia may contain photoreceptors sensitive to polarized light, but their functional integration into the visual system has not been explained. Here, we report that horsefly retina contains 2 ommatidial subtypes that separately analyze polarization of light and color. Horseflies seek their prey by detecting polarized reflections from animal fur. We explain why horseflies are attracted to shiny and to blue objects. Understanding this mechanism will help in controlling fly disease vectors. This study gives an explanation for ommatidial subtype specialization that goes beyond color vision and which is likely a common feature of many insect eyes.
Abstract
The ventral compound eye of many insects contains polarization-sensitive photoreceptors, but little is known about how they are integrated into visual functions. In female horseflies, polarized reflections from animal fur are a key stimulus for host detection. To understand how polarization vision is mediated by the ventral compound eye, we investigated the band-eyed brown horsefly Tabanus bromius using anatomical, physiological, and behavioral approaches. Serial electron microscopic sectioning of the retina and single-cell recordings were used to determine the spectral and polarization sensitivity (PS) of photoreceptors. We found 2 stochastically distributed subtypes of ommatidia, analogous to pale and yellow of other flies. Importantly, the pale analog contains an orthogonal analyzer receptor pair with high PS, formed by an ultraviolet (UV)-sensitive R7 and a UV- and blue-sensitive R8, while the UV-sensitive R7 and green-sensitive R8 in the yellow analog always have low PS. We tested horsefly polarotaxis in the field, using lures with controlled spectral and polarization composition. Polarized reflections without UV and blue components rendered the lures unattractive, while reflections without the green component increased their attractiveness. This is consistent with polarotaxis being guided by a differential signal from polarization analyzers in the pale analogs, and with an inhibitory role of the yellow analogs. Our results reveal how stochastically distributed sensory units with modality-specific division of labor serve as separate and opposing input channels for visual guidance.
Data Availability
Data deposition: The original image stack of horsefly retina serial block-face scanning electron micrographs is available as raw images (high-resolution tiff) and movies at Figshare, https://doi.org/10.6084/m9.figshare.8222444.
Acknowledgments
This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel Command, US Air Force under Awards FA9550-15-1-0068 and FA9550-19-1-7005. G.B. and M.K. have received funding from the Slovenian Research Agency (Grants P3-0333 to G.B. and 130-2014 to M.K.). P.P. was cofinanced by the European Union from the European Regional Development Fund and by the Ministry of Education, Science and Sport of Slovenia, priority axis “International Competitiveness of Research, Innovation and Technological Development,” decision letter 5442-1/2018/434. We thank Armin Zankel for his kind assistance at the serial block-face SEM facility and Drs. Doekele Stavenga, Mathias Wernet, and Mikko Juusola for commenting on the manuscript.
Supporting Information
Appendix (PDF)
- Download
- 30.52 MB
References
1
R. Wehner, Astronavigation in insects. Annu. Rev. Entomol. 29, 277–298 (1984).
2
T. F. Mathejczyk, M. F. Wernet, “Sensing polarized light in insects” in Oxford Research Encyclopedias: Neuroscience, S. M. Sherman, Ed. (Oxford University Press, 2017).
3
M. J. How et al., Target detection is enhanced by polarization vision in a fiddler crab. Curr. Biol. 25, 3069–3073 (2015).
4
C. R. Sharkey, J. C. Partridge, N. W. Roberts, Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator. J. Exp. Biol. 218, 3399–3405 (2015).
5
I. Novales Flamarique, Swimming behaviour tunes fish polarization vision to double prey sighting distance. Sci. Rep. 9, 944 (2019).
6
G. Horváth, J. Majer, L. Horváth, I. Szivák, G. Kriska, Ventral polarization vision in tabanids: Horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95, 1093–1100 (2008).
7
Á. Egri et al., New kind of polarotaxis governed by degree of polarization: Attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften 99, 407–416 (2012).
8
J. E. Chainey, “Horse-flies, deer-flies and clegs (Tabanidae)” in Medical Insects and Arachnids, R. P. Lane, R. W. Crosskey, Eds. (Springer, Dordrecht, 1993), pp. 310–332.
9
G. Horváth et al., Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment. R. Soc. Open Sci. 4, 170735 (2017).
10
R. C. Hardie, “Functional organization of the fly retina” in Progress In Sensory Physiology, H. Autrum et al., Eds. (Springer, Berlin, 1985), vol. 5, pp. 1–79.
11
D. G. Stavenga, Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189, 1–17 (2003).
12
T. Wolff, D. Ready, “Pattern formation in the Drosophila retina” in The Development of Drosophila Melanogaster, M. Bate, A. Martinez-Arias, Eds. (Cold Spring Harbor Press, 1993), vol. 2, pp. 1277–1325.
13
K. Kirschfeld, Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten. Naturwissenschaften 58, 201–209 (1971).
14
J. Rister et al., Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170 (2007).
15
K.-F. Fischbach, A. Dittrich, The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).
16
A. Huber, D. P. Smith, C. S. Zuker, R. Paulsen, Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing. J. Biol. Chem. 265, 17906–17910 (1990).
17
M. Heisenberg, E. Buchner, The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. 117, 127–162 (1977).
18
S. Yamaguchi, R. Wolf, C. Desplan, M. Heisenberg, Motion vision is independent of color in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105, 4910–4915 (2008).
19
J. Morante, C. Desplan, The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18, 553–565 (2008).
20
S. Gao et al., The neural substrate of spectral preference in Drosophila. Neuron 60, 328–342 (2008).
21
S. Yamaguchi, C. Desplan, M. Heisenberg, Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 107, 5634–5639 (2010).
22
M. F. Wernet et al., Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115, 267–279 (2003).
23
C. Schnaitmann, C. Garbers, T. Wachtler, H. Tanimoto, Color discrimination with broadband photoreceptors. Curr. Biol. 23, 2375–2382 (2013).
24
T. J. Wardill et al., Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336, 925–931 (2012).
25
W. H. Chou et al., Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron 17, 1101–1115 (1996).
26
N. Franceschini, K. Kirschfeld, B. Minke, Fluorescence of photoreceptor cells observed in vivo. Science 213, 1264–1267 (1981).
27
O. Trujillo-Cenóz, G. D. Bernard, Some aspects of the retinal organization of Sympycnus linetaus Loew (Diptera, Dolichopodidae). J. Ultrastruct. Res. 38, 149–160 (1972).
28
H. Ebadi et al., Patterning the insect eye: From stochastic to deterministic mechanisms. PLoS Comput. Biol. 14, e1006363 (2018).
29
M. E. Fortini, G. M. Rubin, The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster. Cell Tissue Res. 265, 185–191 (1991).
30
R. C. Hardie, Properties of photoreceptor R7 and photoreceptor R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J. Comp. Physiol. 154, 157–165 (1984).
31
T. Labhart, E. P. Meyer, Detectors for polarized skylight in insects: A survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 47, 368–379 (1999).
32
S. Wada, Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z. Morphol. Tiere 77, 87–125 (1974).
33
H. L. De Vries, A. Spoor, R. Jielof, Properties of the eye with respect to polarized light. Physica 19, 419–432 (1953).
34
A. W. Snyder, S. B. Laughlin, Dichroism and absorption by photoreceptors. J. Comp. Physiol. 100, 101–116 (1975).
35
T. H. Goldsmith, R. Wehner, Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J. Gen. Physiol. 70, 453–490 (1977).
36
M. F. Moody, J. R. Parriss, The discrimination of polarized light by Octopus: A behavioural and morphological study. Z. Vgl. Physiol. 44, 268–291 (1961).
37
R. Wehner, G. D. Bernard, Photoreceptor twist: A solution to the false-color problem. Proc. Natl. Acad. Sci. U.S.A. 90, 4132–4135 (1993).
38
A. Kelber, C. Thunell, K. Arikawa, Polarisation-dependent colour vision in Papilio butterflies. J. Exp. Biol. 204, 2469–2480 (2001).
39
M. Kinoshita, K. Yamazato, K. Arikawa, Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 688–696 (2011).
40
U. Smola, H. Wunderer, Fly rhabdomeres twist in vivo. J. Comp. Physiol. 142, 43–49 (1981).
41
U. Smola, H. Wunderer, Twisting of blowfly (Calliphora erythrocephala meigen) (Diptera, calliphoridae) rhabdomeres: An in vivo feature unaffected by preparation or fixation. Int. J. Insect Morphol. Embryol. 10, 331–343 (1981).
42
M. F. Wernet et al., Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22, 12–20 (2012).
43
N. W. Roberts, M. L. Porter, T. W. Cronin, The molecular basis of mechanisms underlying polarization vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 627–637 (2011).
44
A. W. Snyder, Polarization sensitivity of individual retinula cells. J. Comp. Physiol. 83, 331–360 (1973).
45
H. Wunderer, P. Seifert, F. Pilstl, A. Lange, U. Smola, Crustacean-like rhabdoms at the dorsal rim of several Dipteran eyes (Syrphidae, Tabanidae). Naturwissenschaften 77, 343–345 (1990).
46
H. Wunderer, U. Smola, Functional morphology of the retina of Chrysops caecutiens and Haematopota pluvialis (Diptera, Tabanidae)–Region around eye equator. Int. J. Insect Morphol. Embryol. 15, 311–319 (1986).
47
P. Seifert, H. Wunderer, U. Smola, Regional differences in a nematoceran retina (Insecta, Diptera). Zoomorphology 105, 99–107 (1985).
48
F. J. Heras, S. B. Laughlin, Optimizing the use of a sensor resource for opponent polarization coding. PeerJ 5, e2772 (2017).
49
L. Schneider, H. Langer, The structure of the rhabdome in the bifunctional compound eye of the pond skater, Gerris lacustris. Z. Zellforsch Mikrosk. Anat. 99, 538–559 (1969).
50
R. Schwind, Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res. 232, 53–63 (1983).
51
G. Belušič, K. Šporar, A. Meglič, Extreme polarisation sensitivity in the retina of the corn borer moth Ostrinia. J. Exp. Biol. 220, 2047–2056 (2017).
52
T. Heinloth, J. Uhlhorn, M. F. Wernet, Insect responses to linearly polarized reflections: Orphan behaviors without neural circuits. Front. Cell. Neurosci. 12, 50 (2018).
53
P. T. Weir et al., Anatomical reconstruction and functional imaging reveal an ordered array of skylight polarization detectors in Drosophila. J. Neurosci. 36, 5397–5404 (2016).
54
C. Schnaitmann et al., Color processing in the early visual system of Drosophila. Cell 172, 318–330.e18 (2018).
55
T. Labhart, Polarization-opponent interneurons in the insect visual system. Nature 331, 435–437 (1988).
56
S. Heinze, “Polarization vision” in Encyclopedia of Computational Neuroscience, D. Jaeger, R. Jung, Eds. (Springer, New York, 2013), pp. 1–30.
57
J. Rister, C. Desplan, D. Vasiliauskas, Establishing and maintaining gene expression patterns: Insights from sensory receptor patterning. Development 140, 493–503 (2013).
58
M. Hilbrant et al., Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic. BMC Evol. Biol. 14, 240 (2014).
59
D. G. Stavenga, Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189, 189–202 (2003).
60
M. Ilić, A. Meglič, M. Kreft, G. Belušič, The fly sensitizing pigment enhances UV spectral sensitivity while preventing polarization-induced artifacts. Front. Cell. Neurosci. 12, 34 (2018).
61
J. Marshall, N. Roberts, T. Cronin, “Polarisation signals” in Polarized Light and Polarization Vision in Animal Sciences, G. Horváth, Ed. (Springer, Heidelberg, 2014), pp. 407–442.
62
D. G. Stavenga, M. F. Wehling, G. Belušič, Functional interplay of visual, sensitizing and screening pigments in the eyes of Drosophila and other red-eyed dipteran flies. J. Physiol. 595, 5481–5494 (2017).
63
I. Novales Flamarique, H. I. Browman, Wavelength-dependent polarization orientation in Daphnia. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 186, 1073–1087 (2000).
64
H. Sasaki, Comparison of capturing tabanid flies (Diptera: Tabanidae) by five different color traps in the fields. Appl. Entomol. Zool. 36, 515–519 (2001).
65
S. A. Allan, J. Stoffolano, Effects of background contrast on visual attraction and orientation of Tabanus nigrovittatus (Diptera: Tabanidae). Environ. Entomol. 15, 689–694 (1986).
66
R. Mizell, R. F. Mizell Iv, R. A. Mizell, Trolling: A novel trapping method for Chrysops spp. (Diptera: Tabanidae). Fla. Entomol. 85, 356–366 (2003).
67
J. M. Lindh et al., Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes. PLoS Negl. Trop. Dis. 6, e1661 (2012).
68
R. Hardie, K. Vogt, A. Rudolph, The compound eye of the tsetse-fly (Glossina morsitans morsitans and Glossina palpalis palpalis). J. Insect Physiol. 35, 423–431 (1989).
69
S. A. Allan, J. F. Day, J. D. Edman, Visual ecology of biting flies. Annu. Rev. Entomol. 32, 297–316 (1987).
70
S. Krčmar, D. K. Hackenberger, B. K. Hackenberger, Key to the horse flies fauna of Croatia (Diptera, Tabanidae). Period. Biol. 113, 1–61 (2011).
71
J. Stalleicken, T. Labhart, H. Mouritsen, Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 321–331 (2006).
72
K. Kirschfeld, “Absorbtion properties of photopigments in single rods, cones and rhabdomeres” in International School of Physics “Enrico Fermi”: Course XLIII, 1968, W. Reichhardt, Ed. (Academic Press, 1969), pp. 116–136.
73
W. S. Stark, A. M. Ivanyshyn, R. M. Greenberg, Sensitivity and photopigments of R1-6, a 2-peaked photoreceptor, in Drosophila, Calliphora and Musca. J. Comp. Physiol. 121, 289–305 (1977).
74
D. G. Stavenga, Fly visual pigments. Difference in visual pigments of blowfly and dronefly peripheral retinula cells. J. Comp. Physiol. 111, 137–152 (1976).
75
G. Belušič, M. Ilić, A. Meglič, P. Pirih, A fast multispectral light synthesiser based on LEDs and a diffraction grating. Sci. Rep. 6, 32012 (2016).
76
D. G. Stavenga, R. P. Smits, B. J. Hoenders, Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res. 33, 1011–1017 (1993).
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Data Availability
Data deposition: The original image stack of horsefly retina serial block-face scanning electron micrographs is available as raw images (high-resolution tiff) and movies at Figshare, https://doi.org/10.6084/m9.figshare.8222444.
Submission history
Published online: October 7, 2019
Published in issue: October 22, 2019
Keywords
Acknowledgments
This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel Command, US Air Force under Awards FA9550-15-1-0068 and FA9550-19-1-7005. G.B. and M.K. have received funding from the Slovenian Research Agency (Grants P3-0333 to G.B. and 130-2014 to M.K.). P.P. was cofinanced by the European Union from the European Regional Development Fund and by the Ministry of Education, Science and Sport of Slovenia, priority axis “International Competitiveness of Research, Innovation and Technological Development,” decision letter 5442-1/2018/434. We thank Armin Zankel for his kind assistance at the serial block-face SEM facility and Drs. Doekele Stavenga, Mathias Wernet, and Mikko Juusola for commenting on the manuscript.
Notes
This article is a PNAS Direct Submission.
Authors
Competing Interests
The authors declare no competing interest.
Metrics & Citations
Metrics
Citation statements
Altmetrics
Citations
Cite this article
Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina, Proc. Natl. Acad. Sci. U.S.A.
116 (43) 21843-21853,
https://doi.org/10.1073/pnas.1910807116
(2019).
Copied!
Copying failed.
Export the article citation data by selecting a format from the list below and clicking Export.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.