Carryover insecticide exposure reduces bee reproduction across years

Acknowledgments
I thank K. A. Dolezal and L. N. Taylor for editorial comments and M. E. O’Neal for thoughtful conversation.
References
1
M. L. Forister, E. M. Pelton, S. H. Black, Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
2
D. Goulson, E. Nicholls, C. Botías, E. L. Rotheray, Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
3
M. G. Cullen, L. J. Thompson, J. C. Carolan, J. C. Stout, D. A. Stanley, Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS One 14, e0225743 (2019).
4
European Commission, “Commission implementing regulation (EU) No 485/2013 of 24 May 2013 amending implementing regulation (EU) No. 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances” (Publications Office of the European Union, 2021).
5
H. C. J. Godfray et al., A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. Biol. Sci. 281, 20140558 (2014).
6
C. Stuligross, N. M. Williams, Past insecticide exposure reduces bee reproduction and population growth rate. Proc. Natl. Acad. Sci. U.S.A. 118, e2109909118 (2021).
7
J. R. Pecenka, L. L. Ingwell, R. E. Foster, C. H. Krupke, I. Kaplan, IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proc. Natl. Acad. Sci. U.S.A. 118, e2108429118 (2021).
8
US Environmental Protection Agency, Introduction to pesticide labels. https://www.epa.gov/pesticide-labels/introduction-pesticide-labels. Accessed 12 November 2021.
9
H. Hesselbach, R. Scheiner, Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Sci. Rep. 8, 4954 (2018).
10
J. Haas et al., A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone. Ecotoxicol. Environ. Saf. 217, 112247 (2021).
11
L. Tong, J. C. Nieh, S. Tosi, Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere 237, 124408 (2019).
12
S. Tosi, J. C. Nieh, Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proc. Biol. Sci. 286, 20190433 (2019).
13
H. M. Thompson, T. Pamminger, Are honeybees suitable surrogates for use in pesticide risk assessment for non-Apis bees? Pest Manag. Sci. 75, 2549–2557 (2019).
14
J. C. Lee, F. D. Menalled, D. A. Landis, Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J. Appl. Ecol. 38, 472–483 (2001).
15
L. A. Schulte et al., Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc. Natl. Acad. Sci. U.S.A. 114, 11247–11252 (2017).
16
S. Otto, L. Lazzaro, A. Finizio, G. Zanin, Estimating ecotoxicological effects of pesticide drift on nontarget arthropods in field hedgerows. Environ. Toxicol. Chem. 28, 853–863 (2009).
17
C. Stuligross, N. M. Williams, Pesticide and resource stressors additively impair wild bee reproduction. Proc. Biol. Sci. 287, 20201390 (2020).
18
C. Botías et al., Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49, 12731–12740 (2015).
19
A. G. Dolezal, J. Carrillo-Tripp, W. A. Miller, B. C. Bonning, A. L. Toth, Pollen contaminated with field-relevant levels of cyhalothrin affects honey bee survival, nutritional physiology, and pollen consumption behavior. J. Econ. Entomol. 109, 41–48 (2016).
20
M. J. Hall, G. Zhang, M. E. O’Neal, S. P. Bradbury, J. R. Coats, Quantifying neonicotinoid insecticide residues in milkweed and other forbs sampled from prairie strips established in maize and soybean fields. Agric. Ecosyst. Environ. 325, 107723 (2022).
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Submission history
Published online: December 22, 2021
Published in issue: January 5, 2022
Acknowledgments
I thank K. A. Dolezal and L. N. Taylor for editorial comments and M. E. O’Neal for thoughtful conversation.
Notes
See companion article, “Past insecticide exposure reduces bee reproduction and population growth rate,” https://doi.org/10.1073/pnas.2109909118.
Authors
Competing Interests
The author declares no competing interest.
Metrics & Citations
Metrics
Altmetrics
Citations
Cite this article
Carryover insecticide exposure reduces bee reproduction across years, Proc. Natl. Acad. Sci. U.S.A.
119 (1) e2120128118,
https://doi.org/10.1073/pnas.2120128118
(2022).
Copied!
Copying failed.
Export the article citation data by selecting a format from the list below and clicking Export.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.