Dynamic transformation between bilayer islands and dinuclear clusters of Cr oxide on Au(111) through environment and interface effects
Edited by Alexis Bell, University of California, Berkeley, CA; received November 13, 2021; accepted April 15, 2022
Significance
For oxide catalysts, it is important to elucidate and further control their atomic structures. In this work, well-defined CrO2 bilayer islands and Cr2O7 dinuclear clusters have been grown on Au(111) and unambiguously identified by scanning tunneling microscopy and theoretical calculations. Upon cycled redox treatments, the two kinds of oxide nanostructures can be reversibly transformed. It is interesting to note that both Cr oxides do not exist in bulk but need to be stabilized by the metal surface and the specific environment. Our results suggest that both redox atmosphere and interface confinement effects can be used to construct an oxide nanostructure with the specific chemical state and structure.
Abstract
Dynamic control of oxide nanostructures is crucial for the design of advanced oxide catalysts, which is also significant for understanding the active site and reaction mechanism in oxide catalysis. Here, we demonstrate reversible dynamic conversion between Cr oxide (CrOx) nanoislands with the same thickness and CrOx clusters with identical size supported on an Au(111) surface under different redox treatments. The CrOx nanoislands feature a CrO2 bilayer (BL) structure consisting of two Cr2O3 monolayers bridged by one layer of O, and the CrOx clusters have a Cr2O7 stoichiometry. Oxidation treatment in O3 can disperse the CrO2 BL nanoislands into the Cr2O7 dinuclear clusters, which can be dynamically converted back to the CrO2 BL by annealing in ultrahigh vacuum. Surface science experiments and theoretical simulations reveal that both surface oxygen atoms dissociated from O3 and the confinement effect of the Au substrate play important roles in formation of the Cr2O7 dinuclear clusters. This study suggests that oxide nanocatalysts with controlled size and structure can be stabilized by the specific environment and the oxide–metal interface.
Data Availability
All study data are included in the article and/or SI Appendix.
Acknowledgments
This work was financially supported by the National Key R&D Program of China (2021YFA1502800), National Natural Science Foundation of China (Nos. 21688102, 21825203, and 91945302), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020000), and LiaoNing Revitalization Talents Program (XLYC1902117).
Supporting Information
Appendix 01 (PDF)
- Download
- 1.28 MB
References
1
J. C. Vedrine, Heterogeneous catalysis on metal oxides. Catalysts 7, 341 (2017).
2
H. Yang et al., A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 7, 4580–4598 (2017).
3
J. T. Grant, J. M. Venegas, W. P. McDermott, I. Hermans, Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem. Rev. 118, 2769–2815 (2018).
4
N. Li et al., Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion. ACS Catal. 9, 960–966 (2019).
5
S. Y. Lu et al., Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts. Chin. J. Catal. 42, 2038–2048 (2021).
6
J. Y. Wang et al., Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction. ACS Catal. 10, 3264–3273 (2020).
7
S. Chen, S. Ma, Z. P. Liu, Zirconia-supported ZnO single layer for syngas conversion revealed from machine-learning atomic simulation. J. Phys. Chem. Lett. 12, 3328–3334 (2021).
8
X. B. Zhang et al., Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Appl. Catal. B 284, 119700 (2021).
9
G. Deo, I. E. Wachs, Surface oxide-support interaction (SOSI) for surface redox sites. J. Catal. 129, 307–312 (1991).
10
H. Wang et al., Strong oxide-support interactions accelerate selective dehydrogenation of propane by modulating the surface oxygen. ACS Catal. 10, 10559–10569 (2020).
11
Q. Fu, F. Yang, X. Bao, Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 46, 1692–1701 (2013).
12
X. Xu, Q. Fu, L. Gan, J. Zhu, X. Bao, Interface-confined FeOx adlayers induced by metal support interaction in Pt/FeOx catalysts. J. Phys. Chem. B 122, 984–990 (2018).
13
N. Doudin et al., Creating self-assembled arrays of mono-oxo (MoO3)1 species on TiO2(101) via deposition and decomposition of (MoO3)n oligomers. Proc. Natl. Acad. Sci. U.S.A. 118, e2017703118 (2021).
14
Z. Liu et al., Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst. Science 368, 513–517 (2020).
15
Q. Fu et al., Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).
16
S. Surnev, A. Fortunelli, F. P. Netzer, Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem. Rev. 113, 4314–4372 (2013).
17
H. J. Freund et al., Chapter model systems in heterogeneous catalysis at the atomic level: A personal view. Sci. China Chem. 63, 426–447 (2020).
18
H. Kersell et al., CO oxidation mechanisms on CoOx-Pt thin films. J. Am. Chem. Soc. 142, 8312–8322 (2020).
19
J. A. Rodriguez et al., Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318, 1757–1760 (2007).
20
Y. Liu et al., Elucidating surface structure with action spectroscopy. J. Am. Chem. Soc. 142, 2665–2671 (2020).
21
S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).
22
H. Chen et al., CO and H2 activation over g-ZnO layers and w-ZnO(0001). ACS Catal. 9, 1373–1382 (2019).
23
S. Surnev, J. Schoiswohl, G. Kresse, M. G. Ramsey, F. P. Netzer, Reversible dynamic behavior in catalyst systems: Oscillations of structure and morphology. Phys. Rev. Lett. 89, 246101 (2002).
24
Q. Fu et al., Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis. Phys. Chem. Chem. Phys. 15, 14708–14714 (2013).
25
Y. N. Sun et al., Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 266, 359–368 (2009).
26
A. S. Walton et al., Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 9, 2445–2453 (2015).
27
J. Fester, A. Walton, Z. Li, J. V. Lauritsen, Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands. Phys. Chem. Chem. Phys. 19, 2425–2433 (2017).
28
Z. Nawaz, Light alkane dehydrogenation to light olefin technologies: A comprehensive review. Rev. Chem. Eng. 31, 413–436 (2015).
29
A. Y. Wang, Y. L. Guo, F. Gao, C. H. F. Peden, Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2. Appl. Catal. B 202, 706–714 (2017).
30
M. H. Zhu, I. E. Wachs, Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: A review. ACS Catal. 6, 722–732 (2016).
31
A. Rai, V. K. Singh, J. Nayak, S. R. Barman, Parameter dependent fabrication of chromium nano-structures on Au(111) surface. Surf. Sci. 679, 169–173 (2019).
32
J. Lee, D. C. Sorescu, X. Deng, Tunable lattice constant and band gap of single- and few-layer ZnO. J. Phys. Chem. Lett. 7, 1335–1340 (2016).
33
Y. Zhang, F. Yang, X. Bao, Growth and structures of monolayer and bilayer CeOx nanostructures on Au(111). Surf. Sci. 679, 31–36 (2019).
34
I. Grohmann, E. Kemnitz, A. Lippitz, W. E. S. Unger, Curve fitting of Cr 2p photoelectron spectra of Cr2O3 and CrF3. Surf. Interface Anal. 23, 887–891 (1995).
35
R. E. Kirby, E. L. Garwin, F. K. King, A. R. Nyaiesh, Surface properties of Cr2O3. J. Appl. Phys. 62, 1400–1405 (1987).
36
H. Mönig et al., Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: A case study. ACS Nano 7, 10233–10244 (2013).
37
Y. Liu et al., Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nat. Commun. 8, 14459 (2017).
38
W. Huang et al., Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nat. Commun. 11, 2312 (2020).
39
G. Barcaro et al., Structure of reduced ultrathin TiOx polar films on Pt(111). J. Phys. Chem. C 113, 5721–5729 (2009).
40
S. Q. Wang, J. Goniakowski, C. Noguera, M. R. Castell, Atomic and electronic structure of an epitaxial Nb2O3 honeycomb monolayer on Au(111). Phys. Rev. B 100, 125408 (2019).
41
J. Goniakowski, C. Noguera, Properties of M2O3/Au(111) honeycomb monolayers (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). J. Phys. Chem. C 123, 9272–9281 (2019).
42
C. Büchner et al., Ultrathin silica films: The atomic structure of two-dimensional crystals and glasses. Chemistry 20, 9176–9183 (2014).
43
J. Goniakowski, C. Noguera, Intrinsic properties of pure and mixed monolayer oxides in the honeycomb structure: M2O3 and MM′O3 (M, M′ = Ti, V, Cr, Fe). J. Phys. Chem. C 123, 7898–7910 (2019).
44
M. J. Prieto et al., Insights into reaction kinetics in confined space: Real time observation of water formation under a silica cover. J. Am. Chem. Soc. 143, 8780–8790 (2021).
45
F. Hiebel, M. M. Montemore, E. Kaxiras, C. M. Friend, Direct visualization of quasi-ordered oxygen chain structures on Au(110)-(1 × 2). Surf. Sci. 650, 5–10 (2016).
46
M. A. Vuurman, F. D. Hardcastle, I. E. Wachs, Characterization of CrO3/Al2O3 catalysts under ambient conditions: Influence of coverage and calcination temperature. J. Mol. Catal. 84, 193–205 (1993).
47
T. S. Kim, J. Gong, R. A. Ojifinni, J. M. White, C. B. Mullins, Water activated by atomic oxygen on Au(111) to oxidize CO at low temperatures. J. Am. Chem. Soc. 128, 6282–6283 (2006).
48
J. Hrbek et al., Adsorbate-driven morphological changes of a gold surface at low temperatures. J. Am. Chem. Soc. 130, 17272–17273 (2008).
49
Z. H. Zeng, K. C. Chang, J. Kubal, N. M. Markovic, J. Greeley, Stabilization of ultrathin (hydroxy) oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2, 17070 (2017).
50
Y. Ning et al., Nature of interface confinement effect in oxide/metal catalysts. J. Phys. Chem. C 119, 27556–27561 (2015).
51
C. Wu, M. S. J. Marshall, M. R. Castell, Surface structures of ultrathin TiOx films on Au(111). J. Phys. Chem. C 115, 8643–8652 (2011).
52
Y. Li, K. C. Adamsen, L. Lammich, J. V. Lauritsen, S. Wendt, Atomic-scale view of the oxidation and reduction of supported ultrathin FeO islands. ACS Nano 13, 11632–11641 (2019).
53
H. Wu et al., Controlled growth of uniform two-dimensional ZnO overlayers on Au(111) and surface hydroxylation. Nano Res. 12, 2348–2354 (2019).
54
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
55
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
56
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758–1775 (1999).
57
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
58
M. W. Chase, NIST-JANAF Thermochemical Tables (American Institute of Physics, ed. 4, 1998).
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Data Availability
All study data are included in the article and/or SI Appendix.
Submission history
Received: November 13, 2021
Accepted: April 15, 2022
Published online: May 23, 2022
Published in issue: May 31, 2022
Keywords
Acknowledgments
This work was financially supported by the National Key R&D Program of China (2021YFA1502800), National Natural Science Foundation of China (Nos. 21688102, 21825203, and 91945302), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020000), and LiaoNing Revitalization Talents Program (XLYC1902117).
Notes
This article is a PNAS Direct Submission.
Authors
Competing Interests
The authors declare no competing interest.
Metrics & Citations
Metrics
Citation statements
Altmetrics
Citations
Cite this article
119 (22) e2120716119,
Export the article citation data by selecting a format from the list below and clicking Export.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.