Enumerating soil biodiversity
Edited by Diana Wall, Colorado State University, Fort Colliins, CO; received March 21, 2023; accepted July 2, 2023
Commentary
August 30, 2023
Significance
Soil organisms mediate unique functions we rely on for food, fiber, and human and planetary health. Despite the significance of soil life, we lack a quantitative estimate of soil biodiversity, making it challenging to advocate for the importance of protecting, preserving, and restoring soil life. Here, we show that soil is likely home to 59% of life including everything from microbes to mammals, making it the singular most biodiverse habitat on Earth. Our enumeration can enable stakeholders to more quantitatively advocate for soils in the face of the biodiversity crisis.
Abstract
Soil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g., animals) or report values for diverse groups without partitioning species that live in soil versus other habitats. Here, we reviewed the biodiversity literature to show that soil is likely home to 59 ± 15% of the species on Earth. We therefore estimate an approximately two times greater soil biodiversity than previous estimates, and we include representatives from the simplest (microbial) to most complex (mammals) organisms. Enchytraeidae have the greatest percentage of species in soil (98.6%), followed by fungi (90%), Plantae (85.5%), and Isoptera (84.2%). Our results demonstrate that soil is the most biodiverse singular habitat. By using this estimate of soil biodiversity, we can more accurately and quantitatively advocate for soil organismal conservation and restoration as a central goal of the Anthropocene.
Data, Materials, and Software Availability
All data and scripts associated with this manuscript are available in the following GitLab repository: https://gitlab.com/fungalecology/soil_biodiversity_review (115).
Acknowledgments
This research was funded by grants from the Swiss NSF awarded to MA (PZ00P3_208648) and MvdH (310030-188799). A portion of data were produced by the US Department of Energy Joint Genome Institute (https://ror.org/04xm1d337; operated under Contract No. DE-AC02-05CH11231) in collaboration with the user community. We would also like to thank Stefan Geisen and Joanne Emerson for helpful feedback on earlier versions of the manuscript. We thank Michael Dandley (www.michaeldandley.com) for designing and illustrating the soil organisms shown in Fig. 3 and Elena Havlicek for discussion and exchange.
Author contributions
M.A.A., S.F.B., and M.G.A.v.d.H. designed research; M.A.A. performed research; M.A.A. analyzed data; and M.A.A., S.F.B., and M.G.A.v.d.H. wrote the paper.
Competing interests
The authors declare no competing interest.
Supporting Information
Appendix 01 (PDF)
- Download
- 338.69 KB
References
1
A. M. Elewa, “Mass extinction-a general view” in Mass Extinction (Springer, 2008), pp. 1–4.
2
D. B. Wake, V. T. Vredenburg, Are we in the midst of the sixth mass extinction? A view from the world of amphibians Proc. Natl. Acad. Sci. U.S.A. 105, 11466–11473 (2008).
3
D. S. Wilcove, D. Rothstein, J. Dubow, A. Phillips, E. Losos, Quantifying threats to imperiled species in the United States: Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. BioScience 48, 607–615 (1998).
4
J. Gurevitch, D. K. Padilla, Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474 (2004).
5
R. D. Bardgett, W. H. van der Putten, Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
6
M. G. A. Van Der Heijden, R. D. Bardgett, N. M. Van Straalen, The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
7
U. N. Nielsen, D. H. Wall, J. Six, Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).
8
S. Banerjee, M. G. A. van der Heijden, Soil microbiomes and one health. Nat. Rev. Microbiol. 21, 6–20 (2023).
9
M. A. Anthony et al., Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).
10
T. W. Crowther et al., The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).
11
E. Ladouceur et al., Knowledge sharing for shared success in the decade on ecosystem restoration. Ecol. Solutions Evidence 3, e12117 (2022).
12
T. Decaëns, J. J. Jiménez, C. Gioia, G. Measey, P. Lavelle, The values of soil animals for conservation biology. Eur. J. Soil Biol. 42, S23–S38 (2006).
13
E. Mayr, Systematics and the Origin of Species (Columbia University Press, New York, 1942), p. 334.
14
F. E. Zachos, L. Christidis, S. T. Garnett, Mammalian species and the twofold nature of taxonomy: A comment on Taylor et al. 2019. Mammalia 84, 1–5 (2020).
15
J. W. Sites, J. C. Marshall, Operational criteria for delimiting species. Annu. Rev. Ecol. Evol. Syst. 35, 199–227 (2004).
16
C. J. Burgin, J. P. Colella, P. L. Kahn, N. S. Upham, How many species of mammals are there? J. Mammal. 99, 1–14 (2018).
17
D. Dykhuizen, Species numbers in bacteria. Proc. Calif. Acad. Sci. 56, 62 (2005).
18
P. D. Schloss, Amplicon sequence variants artificially split bacterial genomes into separate clusters. Msphere 6, e00191-21 (2021).
19
S. Louca, F. Mazel, M. Doebeli, L. W. Parfrey, A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 17, e3000106 (2019).
20
C. M. Thomas, K. M. Nielsen, Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).
21
N. Corradi, A. Brachmann, Fungal mating in the most widespread plant symbionts? Trends Plant Sci. 22, 175–183 (2017).
22
J. M. Janda, S. L. Abbott, 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761–2764 (2007).
23
E. Stackebrandt, B. M. Goebel, Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Intern. J. Syst. Evol. Microbiol. 44, 846–849 (1994).
24
L. Tedersoo et al., Best practices in metabarcoding of fungi: From experimental design to results. Mol. Ecol. 31, 2769–2795 (2022).
25
K. S. Ramirez et al., Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).
26
L.-M. Bobay, H. Ochman, Biological species in the viral world. Proc. Natl. Acad. Sci. U.S.A. 115, 6040–6045 (2018).
27
S. Roux et al., Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
28
S. Roux et al., Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
29
M. H. Van Regenmortel, Viruses are real, virus species are man-made, taxonomic constructions. Arch. Virol. 148, 2481 (2003).
30
F. M. Zerbini et al., Differentiating between viruses and virus species by writing their names correctly. Arch. Virol. 167, 1231–1234 (2022).
31
M. Achtman, M. Wagner, Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6, 431–440 (2008).
32
N. E. Stork, How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
33
K. Kiontke, D. H. Fitch, Nematodes. Curr. Biol. 23, R862–R864 (2013).
34
K. J. Locey, J. T. Lennon, Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. U.S.A. 113, 5970–5975 (2016).
35
D. L. Hawksworth, R. Lücking, Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 5–4 (2017).
36
N. J. Gotelli, R. K. Colwell, Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
37
K. I. Ugland, J. S. Gray, K. E. Ellingsen, The species–accumulation curve and estimation of species richness. J. Animal Ecol. 72, 888–897 (2003).
38
B.-R. Kim et al., Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 27, 2089–2093 (2017).
39
T. P. Curtis, W. T. Sloan, J. W. Scannell, Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. U.S.A. 99, 10494–10499 (2002).
40
N. E. Stork, J. McBroom, C. Gely, A. J. Hamilton, New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U.S.A. 112, 7519–7523 (2015).
41
C. Mora, D. P. Tittensor, S. Adl, A. G. Simpson, B. Worm, How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).
42
B. B. Larsen, E. C. Miller, M. K. Rhodes, J. J. Wiens, Inordinate fondness multiplied and redistributed: The number of species on Earth and the new pie of life. Q. Rev. Biol. 92, 229–265 (2017).
43
J. J. Wiens, Vast (but avoidable) underestimation of global biodiversity. PLoS Biol. 19, e3001192 (2021).
44
S. Geisen et al., A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 136, 107536 (2019).
45
M. Swift, D. E. Bignell, F. M. S. Moreira, E. Huising, “The inventory of soil biological diversity: Concepts and general guidelines” in A Handbook of Tropical Soil Biology, F. M. S. Moreira, E. J. Huising, D. E. Bignell, Eds. (Earthscan, London, UK, 2008).
46
A. Orgiazzi, R. D. Bardgett, E. Barrios, Global Soil Biodiversity Atlas (European Commission, 2016).
47
P. Hunter, The rise of the mammals: Fossil discoveries combined with dating advances give insight into the great mammal expansion. EMBO Rep. 21, e51617 (2020).
48
G. Vermeij, R. Dudley, Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol. J. Linnean Soc. 70, 541–554 (2000).
49
Mammal Diversity Database, Mammal diversity database (1.9) [Data set]. Zenodo (2022). https://doi.org/10.5281/zenodo.6407053 (21 October 2022).
50
D. Bagyaraj, C. Nethravathi, K. Nitin, “Soil biodiversity and arthropods: Role in soil fertility” in Economic and Ecological Significance of Arthropods in Diversified Ecosystems (Springer, 2016), pp. 17–51.
51
United Nations Environment Programme World Conservation Monitoring Centre (United Nations Environment Programme-WCMC), Global biodiversity: Status of Earth's living resources (Chapman and Hall, London, UK, 1992).
52
P. J. D. Lambshead, “Marine nematode biodiversity” in Nematology: Advances and Perspectives. Volume 1: Nematode Morphology, Physiology, and Ecology (CABI Books, CABI International, Wallingsform, UK, 2004), pp. 438–468.
53
O. Bánki et al., Catalogue of life checklist (2022), https://doi.org/10.48580/dfqc.
54
T. L. Erwin, Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopterists Bull. 36, 74–75 (1982).
55
K. J. Gaston, “Global species richness” in Encyclopedia of Biodiversity (Academic Press, San Diego, CA, 2008).
56
J. Rusek, Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity Conserv. 7, 1207–1219 (1998).
57
S. P. Hopkin, Biology of the Springtails:(Insecta: Collembola) (OUP Oxford, 1997).
58
M. S. Brewer, P. Sierwald, J. E. Bond, Millipede taxonomy after 250 years: Classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One 7, e37240 (2012).
59
R. Hoffman, Classification of the Diplopoda (Muséum d’Histoire Naturelle, Genève, 1980), pp. 1–237.
60
R. Constantino, Estimating global termite species richness using extrapolation. Sociobiology 65, 10–14 (2018).
61
J. M. Kass et al., The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).
62
J. Delabie et al., “Sampling and analysis methods for ant diversity assessment” in Measuring Arthropod Biodiversity (Springer, 2021), pp. 13–54.
63
P. Martin, E. Martinez-Ansemil, A. Pinder, T. Timm, M. J. Wetzel, “Global diversity of oligochaetous clitellates (‘Oligochaeta’; Clitellata) in freshwater” in Freshwater Animal Diversity Assessment, Developments in Hydrobiology, E. V. Balian, C. Lévêque, H. Segers, K. Martens, Eds. (Springer, Netherlands, 2008), pp. 117–127.
64
GBIF Secretariat, “GBIF backbone taxonomy. Checklist dataset” (2021) (21 October 2022).
65
R. M. Schmelz, R. Collado, Checklist of taxa of Enchytraeidae (Oligochaeta): An update. Soil Org. 87, 149–153 (2015).
66
J. T. Lennon, K. J. Locey, More support for Earth’s massive microbiome. Biol. Direct 15, 1–6 (2020).
67
F. Rohwer, Global phage diversity. Cell 113, 141 (2003).
68
J. C. Ignacio-Espinoza, S. A. Solonenko, M. B. Sullivan, The global virome: Not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013).
69
P. Baldrian, T. Větrovský, C. Lepinay, P. Kohout, High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity 114, 539–547 (2022).
70
P. D. Schloss, R. A. Girard, T. Martin, J. Edwards, J. C. Thrash, Status of the archaeal and bacterial census: An update. mBio 7, e00201-16 (2016).
71
W. Foissner, “Protist diversity and distribution: Some basic considerations” in Protist Diversity and Geographical Distribution, Topics in Biodiversity and Conservation, W. Foissner, D. L. Hawksworth, Eds. (Springer, Netherlands, 2009), pp. 1–8.
72
X. Li, J. J. Wiens, Estimating global biodiversity: The role of cryptic insect species. Syst. Biol. 72, 391–403 (2022).
73
S. Begall, H. Burda, C. E. Schleich, “Subterranean rodents: News from underground” in Subterranean Rodents (Springer, 2007), pp. 3–9.
74
L. Deharveng, C. A. D’Haese, A. Bedos, “Global diversity of springtails (Collembola; Hexapoda) in freshwater” in Freshwater Animal Diversity Assessment (Springer, 2007), pp. 329–338.
75
K. T. Ryder Wilkie, A. L. Mertl, J. F. A. Traniello, Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS One 5, e13146 (2010).
76
G. M. Barker, The Biology of Terrestrial Molluscs (CABI, 2001).
77
C. Lydeard et al., The global decline of nonmarine mollusks. BioScience 54, 321–330 (2004).
78
A. P. Camargo et al., IMG/VR v4: An expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51, D733–D743 (2023).
79
H. Ma et al., The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).
80
D. E. McAllister, A. L. Hamilton, B. Harvey, E. Don, Global Freshwater Biodiversity: Striving for the Integrity of Freshwater Ecosystems (Sea Wind: Bulletin of Ocean Voice International, 1997), vol. 11.
81
G. Zotz, P. Weigelt, M. Kessler, H. Kreft, A. Taylor, EpiList 1.0: A global checklist of vascular epiphytes. Ecology 102, e03326 (2021).
82
J.-P. Hugot, P. Baujard, S. Morand, Biodiversity in helminths and nematodes as a field of study: An overview. Nematology 3, 199–208 (2001).
83
F. Mahé et al., Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 1–8 (2017).
84
W. Appeltans et al., The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
85
E. Abebe, W. Decraemer, P. De Ley, “Global diversity of nematodes (Nematoda) in freshwater” in Freshwater Animal Diversity Assessment, Developments in Hydrobiology, E. V. Balian, C. Lévêque, H. Segers, K. Martens, Eds. (Springer, Netherlands, 2008), pp. 67–78.
86
W. Xiong et al., A global overview of the trophic structure within microbiomes across ecosystems. Environ. Intern. 151, 106438 (2021).
87
D. Singer et al., Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Intern. 146, 106262 (2021).
88
E. Lara, D. Singer, S. Geisen, Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ. Microbiol. 24, 3829–3839 (2022).
89
T. Leho et al., Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
90
M. Öpik et al., The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).
91
E. Egidi et al., A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).
92
C. Averill et al., Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1–9 (2022).
93
K. G. Peay, P. G. Kennedy, J. M. Talbot, Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).
94
A. P. Gryganskyi et al., The early terrestrial fungal lineage of conidiobolus—Transition from saprotroph to parasitic lifestyle. J. Fungi. 8, 789 (2022).
95
S. I. Glassman, J. B. H. Martiny, Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere 3, e00148-18 (2018).
96
C. Quast et al., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
97
L. R. Thompson et al., A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
98
P. F. Kemp, J. Y. Aller, Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47, 161–177 (2004).
99
S. Chibani-Chennoufi, A. Bruttin, M.-L. Dillmann, H. Brüssow, Phage-host interaction: An ecological perspective. J. Bacteriol. 186, 3677–3686 (2004).
100
G. F. Hatfull, Mycobacteriophages: Windows into tuberculosis. PLoS Pathog. 10, e1003953 (2014).
101
L. M. Kasman, L. D. Porter, “Bacteriophages” in StatPearls (StatPearls Publishing, 2022) (8 February 2023).
102
K. E. Kortright, B. K. Chan, P. E. Turner, High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria. Proc. Natl. Acad. Sci. U.S.A. 117, 18670–18679 (2020).
103
I. Hewson et al., Temporal dynamics and decay of putatively allochthonous and autochthonous viral genotypes in contrasting freshwater lakes. Appl. Environ. Microbiol. 78, 6583–6591 (2012).
104
C. Santos-Medellín et al., Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands. Proc. Natl. Acad. Sci. U.S.A. 119, e2209132119 (2022).
105
A. M. ter Horst et al., Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome 9, 233 (2021).
106
D. M. Durham et al., Substantial differences in soil viral community composition within and among four Northern California habitats. ISME Commun. 2, 1–5 (2022).
107
C. Santos-Medellín, S. J. Blazewicz, J. Pett-Ridge, J. B. Emerson, Viral but not bacterial community succession is characterized by extreme turnover shortly after rewetting dry soils. bioRxiv [Preprint] (2023). https://doi.org/10.1101/2023.02.12.528215 (Accessed 20 March 2023).
108
W. E. H. Blum, S. Zechmeister-Boltenstern, K. M. Keiblinger, Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).
109
G. Dominguez-Huerta et al., Diversity and ecological footprint of Global Ocean RNA viruses. Science 376, 1202–1208 (2022).
110
A. A. Pratama, J. D. Van Elsas, The ‘neglected’soil virome–potential role and impact. Trends Microbiol. 26, 649–662 (2018).
111
S. Roux, J. B. Emerson, Diversity in the soil virosphere: To infinity and beyond? Trends Microbiol. 30, 1025–1035 (2022).
112
C. A. Guerra et al., Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).
113
D. Naylor, R. McClure, J. Jansson, Trends in microbial community composition and function by soil depth. Microorganisms 10, 540 (2022).
114
G. W. Griffith, Do we need a global strategy for microbial conservation? Trends Ecol. Evol. 27, 1–2 (2012).
115
M. A. Anthony, Git repository containing all data and scripts. GitLab. https://gitlab.com/fungalecology/soil_biodiversity_review. Deposited 21 March 2023.
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2023 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Data, Materials, and Software Availability
All data and scripts associated with this manuscript are available in the following GitLab repository: https://gitlab.com/fungalecology/soil_biodiversity_review (115).
Submission history
Received: March 21, 2023
Accepted: July 2, 2023
Published online: August 7, 2023
Published in issue: August 15, 2023
Keywords
Acknowledgments
This research was funded by grants from the Swiss NSF awarded to MA (PZ00P3_208648) and MvdH (310030-188799). A portion of data were produced by the US Department of Energy Joint Genome Institute (https://ror.org/04xm1d337; operated under Contract No. DE-AC02-05CH11231) in collaboration with the user community. We would also like to thank Stefan Geisen and Joanne Emerson for helpful feedback on earlier versions of the manuscript. We thank Michael Dandley (www.michaeldandley.com) for designing and illustrating the soil organisms shown in Fig. 3 and Elena Havlicek for discussion and exchange.
Author Contributions
M.A.A., S.F.B., and M.G.A.v.d.H. designed research; M.A.A. performed research; M.A.A. analyzed data; and M.A.A., S.F.B., and M.G.A.v.d.H. wrote the paper.
Competing Interests
The authors declare no competing interest.
Notes
This article is a PNAS Direct Submission.
Authors
Metrics & Citations
Metrics
Citation statements
Altmetrics
Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.