Significance

Developmental genome editing exemplifies the evolution of biological complexity: Why do some eukaryotes carry extra genetic material that is excised in a complicated, costly, and time-consuming manner following sex? Ciliates are among the best-studied models of this phenomenon, however, this study reports a species where extensive editing could not be detected, but which nonetheless maintains substantial differences in DNA modifications and chromatin between its actively transcribed somatic nuclei and silent germline nuclei. This demonstrates that extensive genome editing is not a prerequisite for ciliate nuclear functional differentiation, and challenges the conventional theories about editing: that it is necessary as defense against mobile elements, and that editing, once gained, cannot be lost because of an evolutionary ratchet.

Abstract

Most eukaryotes have one nucleus and nuclear genome per cell. Ciliates have instead evolved distinct nuclei that coexist in each cell: a silent germline vs. transcriptionally active somatic nuclei. In the best-studied model species, both nuclei can divide asexually, but only germline nuclei undergo meiosis and karyogamy during sex. Thereafter, thousands of DNA segments, called internally eliminated sequences (IESs), are excised from copies of the germline genomes to produce the streamlined somatic genome. In Loxodes, however, somatic nuclei cannot divide but instead develop from germline copies even during asexual cell division, which would incur a huge overhead cost if genome editing was required. Here, we purified and sequenced both genomes in Loxodes magnus to see whether their nondividing somatic nuclei are associated with differences in genome architecture. Unlike in other ciliates studied to date, we did not find canonical germline-limited IESs, implying Loxodes does not extensively edit its genomes. Instead, both genomes appear large and equivalent, replete with retrotransposons and repetitive sequences, unlike the compact, gene-rich somatic genomes of other ciliates. Two other hallmarks of nuclear development in ciliates—domesticated DDE-family transposases and editing-associated small RNAs—were also not found. Thus, among the ciliates, Loxodes genomes most resemble those of conventional eukaryotes. Nonetheless, base modifications, histone marks, and nucleosome positioning of vegetative Loxodes nuclei are consistent with functional differentiation between actively transcribed somatic vs. inactive germline nuclei. Given their phylogenetic position, it is likely that editing was present in the ancestral ciliate but secondarily lost in the Loxodes lineage.

Continue Reading

Data, Materials, and Software Availability

Software is archived on Zenodo (49, 8486, 94, 96, 105, 113115, 122). Sequencing data are deposited in the European Nucleotide Archive (ENA) (81, 83, 87, 100). Flow cytometry data (123127), Western blots (128), immunofluorescence imaging (129), L. magnus genome annotations (82), and variant calling (130) are deposited in EDMOND (Max Planck Digital Library).

Acknowledgments

We thank Insa Hirschberg and Frank Chan for training and access to the BD FACSMelody; the Max Planck Genome Centre Cologne (https://mpgc.mpipz.mpg.de/home/) for PacBio and RNA-seq library preparation and sequencing; Heike Budde, Christa Lanz, and the Max Planck Institute for Biology Genome Center for additional sequencing; Andre Noll for computer system administration; Abigail Howell and Michael Borg for suggestions on flow sorting; Aurora Panzera, Vanessa Carlos, and Christian Feldhaus for assistance with optical microscopy; Jürgen Berger and Iris Koch for electron microscopy; Sinja Mattes and Amelie Albrecht for culture maintenance; and Klaus Eisler for gift of strains from the former Tübingen teaching collection. This research was supported by the Max-Planck-Gesellschaft.

Author contributions

B.K.B.S., A.S., and E.S. designed research; B.K.B.S., A.S., C.E., and E.S. performed research; D.E.V., M.P., V.S., and B.H. contributed new reagents/analytic tools; B.K.B.S., A.S., D.E.V., and E.S. analyzed data; and B.K.B.S., A.S., D.E.V., C.E., M.P., V.S., and E.S. wrote the paper.

Competing interests

The authors declare no competing interest.

Supporting Information

Appendix 01 (PDF)

References

1
C. D. Allis, C. V. Glover, M. A. Gorovsky, Micronuclei of Tetrahymena contain two types of histone H3. Proc. Natl. Acad. Sci. U.S.A. 76, 4857–4861 (1979).
2
D. L. Chalker, E. Meyer, K. Mochizuki, Epigenetics of ciliates. Cold Spring Harb. Perspect. Biol. 5, a017764 (2013).
3
M. Lhuillier-Akakpo et al., Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet. 10, e1004665 (2014).
4
J. Xiong et al., Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin. Nucleic Acids Res. 44, 10091–10105 (2016).
5
K. Pratt, S. Hattman, Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila. Mol. Cell. Biol. 1, 600–608 (1981).
6
L. Y. Beh et al., Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell 177, 1781–1796.e25 (2019).
7
D. J. Cummings, A. Tait, J. M. Goddard, Methylated bases in DNA from Paramecium aurelia. Biochim. Biophys. Acta 374, 1–11 (1974).
8
Y. Wang et al., A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res. 47, 11771–11789 (2019).
9
D. M. Prescott, The DNA of ciliated protozoa. Microbiol. Rev. 58, 233–267 (1994).
10
I. B. Raikov, “Nuclei of ciliates” in Ciliates: Cells as Organisms, K. Hausmann, P. C. Bradbury, Eds. (Gustav Fischer Verlag, ed. 1, 1996), pp. 221–242.
11
V. V. Schwartz, Struktur und Entwicklung des Makronucleus von Paramecium bursaria. Archiv für Protistenkunde 120, 255–277 (1978).
12
D. Ammermann, G. Steinbrück, L. von Berger, W. Hennig, The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma 45, 401–429 (1974).
13
X. Chen et al., The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158, 1187–1198 (2014).
14
E. P. Hamilton et al., Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife 5, e19090 (2016).
15
O. Arnaiz et al., The Paramecium germline genome provides a niche for intragenic parasitic DNA: Evolutionary dynamics of internal eliminated sequences. PLoS Genet. 8, e1002984 (2012).
16
D. Sellis et al., Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol. 19, e3001309 (2021).
17
B. K. B. Seah et al., MITE infestation accommodated by genome editing in the germline genome of the ciliate Blepharisma. Proc. Natl. Acad. Sci. U.S.A. 120, e2213985120 (2023).
18
J.-M. Aury et al., Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178 (2006).
19
J. A. Eisen et al., Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286 (2006).
20
M. Singh et al., Origins of genome-editing excisases as illuminated by the somatic genome of the ciliate Blepharisma. Proc. Natl. Acad. Sci. U.S.A. 120, e2213887120 (2023).
21
E. C. Swart et al., The Oxytricha trifallax macronuclear genome: A complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 11, e1001473 (2013).
22
M. M. Slabodnick et al., The macronuclear genome of Stentor coeruleus reveals tiny introns in a giant cell. Curr. Biol. 27, 569–575 (2017).
23
D. V. Vinogradov et al., Draft macronucleus genome of Euplotes crassus ciliate. Mol. Biol. (NY) 46, 328–333 (2012).
24
C.-Y. Cheng, A. Vogt, K. Mochizuki, M.-C. Yao, A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol. Biol. Cell 21, 1753–1762 (2010).
25
C. Baudry et al., PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 23, 2478–2483 (2009).
26
M. Nowacki et al., A functional role for transposases in a large eukaryotic genome. Science 324, 935–938 (2009).
27
L. A. Klobutcher, G. Herrick, Developmental genome reorganization in ciliated protozoa: The transposon link. Prog. Nucleic Acid Res. Mol. Biol. 56, 1–62 (1997).
28
K. Mochizuki, N. A. Fine, T. Fujisawa, M. A. Gorovsky, Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689–699 (2002).
29
K. Bouhouche, J.-F. Gout, A. Kapusta, M. Bétermier, E. Meyer, Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res. 39, 4249–4264 (2011).
30
P. Y. Sandoval, E. C. Swart, M. Arambasic, M. Nowacki, Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev. Cell 28, 174–188 (2014).
31
W. Fang, X. Wang, J. R. Bracht, M. Nowacki, L. F. Landweber, Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell 151, 1243–1255 (2012).
32
A. M. Zahler, Z. T. Neeb, A. Lin, S. Katzman, Mating of the stichotrichous ciliate Oxytricha trifallax induces production of a class of 27 nt small RNAs derived from the parental macronucleus. PLoS One 7, e42371 (2012).
33
B. K. B. Seah, E. C. Swart, When cleaning facilitates cluttering–Genome editing in ciliates. Trends Genet. 39, P344–346 (2023).
34
K. H. I. Drotos, M. V. Zagoskin, T. Kess, T. R. Gregory, G. A. Wyngaard, Throwing away DNA: Programmed downsizing in somatic nuclei. Trends Genet. 38, 483–500 (2022).
35
I. B. Raikov, Primitive never-dividing macronuclei of some lower ciliates. Int. Rev. Cytol. 95, 267–325 (1985).
36
N. N. Bobyleva, B. N. Kudrjavtsev, I. B. Raikov, Changes of the DNA content of differentiating and adult macronuclei of the ciliate Loxodes magnus (Karyorelictida). J. Cell Sci. 44, 375–394 (1980).
37
F. Gao et al., The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Sci. Rep. 6, 24874 (2016).
38
R. P. Hirt et al., Phylogenetic relationships among karyorelictids and heterotrichs inferred from small subunit rRNA sequences: Resolution at the base of the ciliate tree. Mol. Phylogenet. Evol. 4, 77–87 (1995).
39
X. X. Maurer-Alcalá, Y. Yan, O. A. Pilling, R. Knight, L. A. Katz, Twisted Tales: Insights into genome diversity of ciliates using single-cell 'omics. Genome Biol. Evol. 10, 1927–1939 (2018).
40
C. Denby Wilkes, O. Arnaiz, L. Sperling, ParTIES: A toolbox for Paramecium interspersed DNA elimination studies. Bioinformatics 32, 599–601 (2016).
41
Y. Feng, L. Y. Beh, W.-J. Chang, L. F. Landweber, SIGAR: Inferring features of genome architecture and DNA rearrangements by split-read mapping. Genome Biol. Evol. 12, 1711–1718 (2020).
42
B. K. B. Seah, E. C. Swart, BleTIES: Annotation of natural genome editing in ciliates using long read sequencing. Bioinformatics 37, 3929–3931 (2021).
43
A. Le Mouël, A. Butler, F. Caron, E. Meyer, Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryot. Cell 2, 1076–1090 (2003).
44
B. K. B. Seah, A. Singh, E. C. Swart, Karyorelict ciliates use an ambiguous genetic code with context-dependent stop/sense codons. Peer Community J. 2, e42 (2022).
45
E. C. Swart, V. Serra, G. Petroni, M. Nowacki, Genetic codes with no dedicated stop codon: Context-dependent translation termination. Cell 166, 691–702 (2016).
46
V. S. Bondarenko, M. S. Gelfand, Evolution of the exon-intron structure in ciliate genomes. PLoS One 11, e0161476 (2016).
47
O. Jaillon et al., Translational control of intron splicing in eukaryotes. Nature 451, 359–362 (2008).
48
M. Stanke, S. Waack, Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (suppl. 2), ii215–ii225 (2003).
49
D. E. Vetter. Swart-lab/pogigwasc (v0.1). Zenodo. https://doi.org/10.5281/zenodo.7120458. Deposited 28 September 2022.
50
D. E. Vetter, Prediction of genes in genomes with ambiguous genetic codes. Zenodo (2022). https://doi.org/10.5281/zenodo.7056821.
51
C. Hoehener, I. Hug, M. Nowacki, Dicer-like enzymes with sequence cleavage preferences. Cell 173, 234–247.e7 (2018).
52
W. Makałowski, V. Gotea, A. Pande, I. Makałowska, Transposable elements: Classification, identification, and their use as a tool for comparative genomics. Methods Mol. Biol. 1910, 177–207 (2019).
53
J. S. Han, Non-long terminal repeat (non-LTR) retrotransposons: Mechanisms, recent developments, and unanswered questions. Mob. DNA 1, 15 (2010).
54
K. J. Vavra, C. D. Allis, M. A. Gorovsky, Regulation of histone acetylation in Tetrahymena macro- and micronuclei. J. Biol. Chem. 257, 2591–2598 (1982).
55
F. Drews et al., Broad domains of histone marks in the highly compact Paramecium macronuclear genome. Genome Res. 32, 710–725 (2022).
56
S. D. Taverna et al., Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc. Natl. Acad. Sci. U.S.A. 104, 2086–2091 (2007).
57
S. D. Taverna, R. S. Coyne, C. D. Allis, Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110, 701–711 (2002).
58
Y. Wang, X. Chen, Y. Sheng, Y. Liu, S. Gao, N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res. 45, 11594–11606 (2017).
59
B. Pan et al., Potential role of N6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria. iScience 26, 106676 (2023).
60
Y. Sheng et al., Semi-conservative transmission of DNA N6-adenine methylation in a unicellular eukaryote. bioRxiv [Preprint] (2023). https://doi.org/10.1101/2023.02.15.468708 (Accessed 19 July 2023).
61
V. G. Kovaleva, I. B. Raikov, Diminution and re-synthesis of DNA during development and senescence of the “diploid” macronuclei of the ciliate Trachelonema sulcata (Gymnostomata, Karyorelictida). Chromosoma 67, 177–192 (1978).
62
Y. Feng et al., Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes. Elife 11, e82979 (2022).
63
J. O. Corliss, E. Hartwig, The “primitive” interstitial ciliates: Their ecology, nuclear uniquenesses, and postulated place in the evolution and systematics of the phylum Ciliophora. Mikrofauna des Meeresbodens 61, 65–88 (1977).
64
J. Bischerour et al., Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. Elife 7, e37927 (2018).
65
R. S. Coyne, M. Lhuillier-Akakpo, S. Duharcourt, RNA-guided DNA rearrangements in ciliates: Is the best genome defence a good offence? Biol. Cell 104, 309–325 (2012).
66
E. C. Swart, M. Nowacki, The eukaryotic way to defend and edit genomes by sRNA-targeted DNA deletion. Ann. N. Y. Acad. Sci. 1341, 106–114 (2015).
67
A. Stoltzfus, On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).
68
S. A. Muñoz-Gómez, G. Bilolikar, J. G. Wideman, K. Geiler-Samerotte, Constructive neutral evolution 20 years later. J. Mol. Evol. 89, 172–182 (2021).
69
S. T. Szak et al., Molecular archeology of L1 insertions in the human genome. Genome Biol. 3, research0052 (2002).
70
S. J. Hoyt et al., From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).
71
M. Kabi, G. J. Filion, Heterochromatin: Did H3K9 methylation evolve to tame transposons? Genome Biol. 22, 325 (2021).
72
F. Drews et al., Broad domains of histone marks in the highly compact Paramecium macronuclear genome. bioRxiv [Preprint] (2021). https://doi.org/10.1101/2021.08.05.454756 (Accessed 22 February 2022).
73
J. D. Berger, Nuclear differentiation and nucleic acid synthesis in well-fed exconjugants of Paramecium aurelia. Chromosoma 42, 247–268 (1973).
74
J. Beisson et al., Maintaining clonal Paramecium tetraurelia cell lines of controlled age through daily reisolation. Cold Spring Harb. Protoc. 2010, pdb.prot5361 (2010).
75
A. Miyake, V. Rivola, T. Harumoto, Double paths of macronucleus differentiation at conjugation in Blepharisma japonicum. Eur. J. Protistol. 27, 178–200 (1991).
76
C. Rey, C. Launay, E. Wenger, M. Delattre, Programmed DNA elimination in Mesorhabditis nematodes. Curr. Biol. 33, 3711–3721.e5 (2023).
77
B. K. B. Seah, C. Emmerich, A. Singh, E. C. Swart, Improved methods for bulk cultivation and fixation of Loxodes ciliates for fluorescence microscopy. Protist 173, 125905 (2022).
78
B. K. B. Seah et al., “Loxodes nuclei FACS separation detailed protocol.” Edmond. Available at https://doi.org/10.17617/3.OYUXDS. Deposited 14 October 2023.
79
L. B. Preer, G. Hamilton, J. R. Preer, Micronuclear DNA from Paramecium tetraurelia: Serotype 51 A gene has internally eliminated sequences. J. Protozool. 39, 678–682 (1992).
80
D. W. Galbraith et al., Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).
81
B. K. B. Seah et al., “Loxodes magnusnucleosomal DNA sequencing.” ENA. Available at https://www.ebi.ac.uk/ena/browser/view/PRJEB55146. Deposited 21 November 2023.
82
B. K. B. Seah, D. E. Vetter, E. Swart, “Loxodes magnus genome assemblies and annotations.” Edmond. Available at https://doi.org/10.17617/3.9QTROS. Deposited 5 September 2023.
83
B.K.B. Seah et al., “Loxodes magnus nuclear genomes.” ENA. Available at https://www.ebi.ac.uk/ena/browser/view/PRJEB55123. Deposited 21 November 2023.
84
B.K.B. Seah. Swart-lab/mnutils (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040349. Deposited 25 October 2023.
85
B. K. B. Seah. Swart-lab/loxodes-nucleosomes-workflow (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040357. Deposited 25 October 2023.
86
B. K. B. Seah. Swart-lab/loxodes-kmer-comp (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040362. Deposited 25 October 2023.
87
B. K. B. Seah et al., “Loxodes striatus nuclear genomes.” ENA. Available at https://www.ebi.ac.uk/ena/browser/view/PRJEB55752. Deposited 21 November 2023.
88
D. Mapleson, G. Garcia Accinelli, G. Kettleborough, J. Wright, B. J. Clavijo, KAT: A K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576 (2017).
89
G. Marçais, C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
90
A. Döring, D. Weese, T. Rausch, K. Reinert, SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics 9, 11 (2008).
91
M. Kolmogorov, J. Yuan, Y. Lin, P. A. Pevzner, Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
92
C.-S. Chin et al., Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
93
R. Vaser, I. Sović, N. Nagarajan, M. Šikić, Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).
94
B. K. B. Seah. Swart-lab/loxodes-assembly-workflow (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10101418. Deposited 10 November 2023.
95
G. Benson, Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
96
B. K. B. Seah. Swart-lab/trf_utils (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040366. Deposited 25 October 2023.
97
A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
98
Z. Bao, S. R. Eddy, Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).
99
A. L. Price, N. C. Jones, P. A. Pevzner, De novo identification of repeat families in large genomes. Bioinformatics 21 (suppl. 1), i351–i358 (2005).
100
B. K. B. Seah et al., “Loxodes magnus starved/fed RNAseq.” ENA. Available at https://www.ebi.ac.uk/ena/browser/view/PRJEB55324. Deposited 21 November 2023.
101
S. S. Merchant et al., The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250 (2007).
102
D. Kim, J. M. Paggi, C. Park, C. Bennett, S. L. Salzberg, Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
103
H. Li, Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
104
P. Danecek et al., Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
105
B. K. B. Seah. Swart-lab/loxodes-bleties-workflow (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10101416. Deposited 10 November 2023.
106
B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
107
E. Garrison, G. Marth, Haplotype-based variant detection from short-read sequencing. arXiv [Preprint] (2012). https://doi.org/10.48550/arXiv.1207.3907 (Accessed 11 February 2021).
108
E. Garrison, Z. N. Kronenberg, E. T. Dawson, B. S. Pedersen, P. Prins, A spectrum of free software tools for processing the VCF variant call format: Vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 18, e1009123 (2022).
109
M. Martin et al., WhatsHap: Fast and accurate read-based phasing. bioRxiv [Preprint] (2016). https://doi.org/10.1101/085050 (Accessed 11 February 2021).
110
R. K. Dale, B. S. Pedersen, A. R. Quinlan, Pybedtools: A flexible Python library for manipulating genomic datasets and annotations. Bioinformatics 27, 3423–3424 (2011).
111
H. Li et al., The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
112
E. P. Nawrocki, D. L. Kolbe, S. R. Eddy, Infernal 1.0: Inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
113
B. K. B. Seah. Swart-lab/pogigwasc-utils (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10101414. Deposited 10 November 2023.
114
B. K. B. Seah. Swart-lab/loxodes-pogigwasc-workflow (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040360. Deposited 25 October 2023.
115
B. K. B. Seah. Swart-lab/loxodes-intronarrator-workflow (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040351. Deposited 25 October 2023.
116
E. Quevillon et al., InterProScan: Protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).
117
T. Paysan-Lafosse et al., InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
118
B. K. B. Seah, E. Swart, “Shortlists of conserved domains for searches of key genes in Loxodes.” Edmond. Available at https://doi.org/10.17617/3.BOFMWS. Deposited 26 June 2023.
119
C. Camacho et al., BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).
120
A. Singh et al., Determination of the presence of 5-methylcytosine in Paramecium tetraurelia. PLoS One 13, e0206667 (2018).
121
J. R. Bracht, D. H. Perlman, L. F. Landweber, Cytosine methylation and hydroxymethylation mark DNA for elimination in Oxytricha trifallax. Genome Biol. 13, R99 (2012).
122
B. K. B. Seah, Swart-lab/loxodes-srna-workflow (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10040364. Deposited 25 October 2023.
123
B. K. B. Seah, E. Swart, “FACS run data from Loxodes magnus nuclei separation for genome sequencing.” Edmond. Available at https://doi.org/10.17617/3.4THBHC. Deposited 11 April 2023.
124
B. K. B. Seah, E. Swart, “FACS run data from Loxodes striatus nuclei separation for genome sequencing.” Edmond. Available at https://doi.org/10.17617/3.IUFX39. Deposited 11 April 2023.
125
B. K. B. Seah, E. Swart, “FACS run data from Loxodes magnus nuclei separation for nucleosomal sequencing.” Edmond. Available at https://doi.org/10.17617/3.Y18RPV. Deposited 11 April 2023.
126
B. K. B. Seah, E. Swart, “FACS run data from Loxodes magnus nuclei separation for Western blots.” Edmond. Available at https://doi.org/10.17617/3.3TQWJX. Deposited 16 October 2023.
127
B. K. B. Seah, E. Swart, “FACS run data from Loxodes striatus nuclei separation for Western blots.” Edmond. Available at https://doi.org/10.17617/3.GZNWOJ. Deposited 16 October 2023.
128
B. K. B. Seah, A. Singh, C. Emmerich, E. Swart, “Western blots of Loxodes ciliate nuclei for histones and histone modifications.” Edmond. Available at https://doi.org/10.17617/3.0DVGMU. Deposited 24 June 2023.
129
B. K. B. Seah, C. Emmerich, A. Singh, E. Swart, “Immunofluorescence of Loxodes ciliate nuclei for histones, histone marks and 6mA.” Edmond. Available at https://doi.org/10.17617/3.VWAUYE. Deposited 24 June 2023.
130
B. K. B. Seah, E. Swart, “Loxodes magnus indel polymorphisms and variant calling.” Edmond. Available at https://doi.org/10.17617/3.NEV8C1. Deposited 29 July 2023.

Information & Authors

Information

Published in

Go to Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences
Vol. 121 | No. 39
September 24, 2024
PubMed: 39298487

Classifications

Data, Materials, and Software Availability

Software is archived on Zenodo (49, 8486, 94, 96, 105, 113115, 122). Sequencing data are deposited in the European Nucleotide Archive (ENA) (81, 83, 87, 100). Flow cytometry data (123127), Western blots (128), immunofluorescence imaging (129), L. magnus genome annotations (82), and variant calling (130) are deposited in EDMOND (Max Planck Digital Library).

Submission history

Received: January 17, 2024
Accepted: August 8, 2024
Published online: September 19, 2024
Published in issue: September 24, 2024

Keywords

  1. genome editing
  2. macronucleus
  3. micronucleus
  4. Ciliophora
  5. mobile elements

Acknowledgments

We thank Insa Hirschberg and Frank Chan for training and access to the BD FACSMelody; the Max Planck Genome Centre Cologne (https://mpgc.mpipz.mpg.de/home/) for PacBio and RNA-seq library preparation and sequencing; Heike Budde, Christa Lanz, and the Max Planck Institute for Biology Genome Center for additional sequencing; Andre Noll for computer system administration; Abigail Howell and Michael Borg for suggestions on flow sorting; Aurora Panzera, Vanessa Carlos, and Christian Feldhaus for assistance with optical microscopy; Jürgen Berger and Iris Koch for electron microscopy; Sinja Mattes and Amelie Albrecht for culture maintenance; and Klaus Eisler for gift of strains from the former Tübingen teaching collection. This research was supported by the Max-Planck-Gesellschaft.
Author Contributions
B.K.B.S., A.S., and E.S. designed research; B.K.B.S., A.S., C.E., and E.S. performed research; D.E.V., M.P., V.S., and B.H. contributed new reagents/analytic tools; B.K.B.S., A.S., D.E.V., and E.S. analyzed data; and B.K.B.S., A.S., D.E.V., C.E., M.P., V.S., and E.S. wrote the paper.
Competing Interests
The authors declare no competing interest.

Notes

Preprint server: bioRxiv, https://doi.org/10.1101/2023.11.09.566212, CC-BY 4.0 International License.
This article is a PNAS Direct Submission.

Authors

Affiliations

Max Planck Institute for Biology, Tübingen 72076, Germany
Thünen Institute for Biodiversity, Braunschweig 38116, Germany
Present address: Thünen Institute for Biodiversity, Braunschweig 38116, Germany.
Max Planck Institute for Biology, Tübingen 72076, Germany
Max Planck Institute for Biology, Tübingen 72076, Germany
Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
Christiane Emmerich
Max Planck Institute for Biology, Tübingen 72076, Germany
Moritz Peters
Max Planck Institute for Biology, Tübingen 72076, Germany
Friedrich Miescher Laboratory, Tübingen 72076, Germany
Max Planck Institute for Biology, Tübingen 72076, Germany
Friedrich Miescher Laboratory, Tübingen 72076, Germany
Bruno Huettel
Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
Max Planck Institute for Biology, Tübingen 72076, Germany

Notes

1
To whom correspondence may be addressed. Email: [email protected] or [email protected].

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF format

Download this article as a PDF file

DOWNLOAD PDF

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login

Recommend to a librarian

Recommend PNAS to a Librarian

Purchase options

Purchase this article to access the full text.

Single Article Purchase

Nuclear dualism without extensive DNA elimination in the ciliate Loxodes magnus
Proceedings of the National Academy of Sciences
  • Vol. 121
  • No. 39

Media

Figures

Tables

Other

Share

Share

Share article link

Share on social media