p53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H:quinone oxidoreductase 1

November 21, 2003
100 (25) 15065-15070

Abstract

Proteasomal degradation of p53 is mediated by two alternative pathways that are either dependent or independent of both Mdm2 and ubiquitin. The ubiquitin-independent pathway is regulated by NAD(P)H: quinone oxidoreductase 1 (NQO1) that stabilizes p53. The NQO1 inhibitor dicoumarol induces ubiquitin-independent p53 degradation. We now show that, like dicoumarol, several other coumarin and flavone inhibitors of NQO1 activity, which compete with NAD(P)H for binding to NQO1, induced ubiquitin-independent p53 degradation and inhibited wild-type p53-mediated apoptosis. Although wild-type p53 and several p53 mutants were sensitive to dicoumarol-induced degradation, the most frequent “hot-spot” p53 mutants in human cancer, R175H, R248H, and R273H, were resistant to dicoumarol-induced degradation, but remained sensitive to Mdm2-ubiquitin-mediated degradation. The two alternative pathways for p53 degradation thus have different p53 structural requirements. Further mutational analysis showed that arginines at positions 175 and 248 were essential for dicoumarol-induced p53 degradation. NQO1 bound to wild-type p53 and dicoumarol, which induced a conformational change in NQO1, inhibited this binding. Compared with wild-type p53, the hot-spot p53 mutants showed increased binding to NQO1, which can explain their resistance to dicoumarol-induced degradation. NQO1 thus has an important role in stabilizing hot-spot p53 mutant proteins in human cancer.

Continue Reading

Acknowledgments

We thank S. Budilovsky for technical assistance, Dr. M. Oren for advice and the plasmids encoding the hot-spot human p53 mutants, and Dr. T. Rimon for the Trisacryl beads. This work was supported by the Benoziyo Institute of Molecular Medicine, the Dolfi and Lola Ebner Center for Biomedical Research, Mrs. Bernice Gershenson, the M. D. Moross Institute for Cancer Research at the Weizmann Institute of Science, and the Israel Academy of Sciences and Humanities.

References

1
Vogelstein, B., Lane, D. & Levine, A. J. (2000) Nature 408, 307-310.
2
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. (1997) Nature 387, 296-299.
3
Kubbutat, M. H., Jones, S. N. & Vousden, K. H. (1997) Nature 387, 299-303.
4
Asher, G., Lotem, J., Sachs, L., Kahana, C. & Shaul, Y. (2002) Proc. Natl. Acad. Sci. USA 99, 13125-13130.
5
Asher, G., Lotem, J., Cohen, B., Sachs, L. & Shaul, Y. (2001) Proc. Natl. Acad. Sci. USA 98, 1188-1193.
6
Asher, G., Lotem, J., Kama, R., Sachs, L. & Shaul, Y. (2002) Proc. Natl. Acad. Sci. USA 99, 3099-3104.
7
Asher, G., Lotem, J., Sachs, L. & Shaul, Y. Methods Enzymol., in press.
8
Hosoda, S., Nakamura, W. & Hayashi, K. (1974) J. Biol. Chem. 249, 6416-6423.
9
Anwar, A., Dehn, D., Siegel, D., Kepa, J. K., Tang, L. J., Pietenpol, J. A. & Ross, D. (2003) J. Biol. Chem. 278, 10368-10373.
10
Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R. & Harris, C. C. (1994) Nucleic Acids Res. 22, 3551-3555.
11
Prives, C. (1994) Cell 78, 543-546.
12
Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W. & Vogelstein, B. (1998) Science 282, 1497-1501.
13
Hsu, I. C., Tokiwa, T., Bennett, W., Metcalf, R. A., Welsh, J. A., Sun, T. & Harris, C. C. (1993) Carcinogenesis 14, 987-992.
14
Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. & Oren, M. (1991) Nature 352, 345-347.
15
Chowdary, D. R., Dermody, J. J., Jha, K. K. & Ozer, H. L. (1994) Mol. Cell. Biol. 14, 1997-2003.
16
Michalovitz, D., Halevy, O. & Oren, M. (1990) Cell 62, 671-680.
17
Lotem, J. & Sachs, L. (2002) Oncogene 21, 3284-3294.
18
Barak, Y., Gottlieb, E., Juven-Gershon, T. & Oren, M. (1994) Genes Dev. 8, 1739-1749.
19
Garten, S. & Wosilait, W. D. (1971) Biochem. Pharmacol. 20, 1661-1668.
20
Chen, S., Hwang, J. & Deng, P. S. (1993) Arch. Biochem. Biophys. 302, 72-77.
21
Chen, S., Wu, K., Zhang, D., Sherman, M., Knox, R. & Yang, C. S. (1999) Mol. Pharmacol. 56, 272-278.
22
Prestera, T., Prochaska, H. J. & Talalay, P. (1992) Biochemistry 31, 824-833.
23
Soussi, T. (2000) Ann. N.Y. Acad. Sci. 910, 121-139.
24
Midgley, C. A. & Lane, D. P. (1997) Oncogene 15, 1179-1189.
25
Peng, Y., Chen, L., Li, C., Lu, W., Agrawal, S. & Chen, J. (2001) J. Biol. Chem. 276, 6874-6878.
26
Kubbutat, M. H., Ludwig, R. L., Ashcroft, M. & Vousden, K. H. (1998) Mol. Cell. Biol. 18, 5690-5698.
27
Peng, Y., Chen, L., Li, C., Lu, W. & Chen, J. (2001) J. Biol. Chem. 276, 40583-40590.
28
Malkinson, A. M., Siegel, D., Forrest, G. L., Gazdar, A. F., Oie, H. K., Chan, D. C., Bunn, P. A., Mabry, M., Dykes, D. J., Harrison, S. D., et al. (1992) Cancer Res. 52, 4752-4757.
29
Belinsky, M. & Jaiswal, A. K. (1993) Cancer Metastasis Rev. 12, 103-117.
30
Traver, R. D., Horikoshi, T., Danenberg, K. D., Stadlbauer, T. H., Danenberg, P. V., Ross, D. & Gibson, N. W. (1992) Cancer Res. 52, 797-802.
31
Chen, S., Wu, K. & Knox, R. (2000) Free Radical Biol. Med. 29, 276-284.
32
Winski, S. L., Faig, M., Bianchet, M. A., Siegel, D., Swann, E., Fung, K., Duncan, M. W., Moody, C. J., Amzel, L. M. & Ross, D. (2001) Biochemistry 40, 15135-15142.
33
Zhang, Q., Piston, D. W. & Goodman, R. H. (2002) Science 295, 1895-1897.
34
Fjeld, C. C., Birdsong, W. T. & Goodman, R. H. (2003) Proc. Natl. Acad. Sci. USA 100, 9202-9207.
35
Zheng, L., Roeder, R. G. & Luo, Y. (2003) Cell 114, 255-266.
36
Rao, P. V., Horwitz, J. & Zigler, J. S., Jr. (1994) J. Biol. Chem. 269, 13266-13272.
37
Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. & Gu, W. (2001) Cell 107, 137-148.
38
Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L. & Weinberg, R. A. (2001) Cell 107, 149-159.

Information & Authors

Information

Published in

Go to Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences
Vol. 100 | No. 25
December 9, 2003
PubMed: 14634213

Classifications

Submission history

Published online: November 21, 2003
Published in issue: December 9, 2003

Acknowledgments

We thank S. Budilovsky for technical assistance, Dr. M. Oren for advice and the plasmids encoding the hot-spot human p53 mutants, and Dr. T. Rimon for the Trisacryl beads. This work was supported by the Benoziyo Institute of Molecular Medicine, the Dolfi and Lola Ebner Center for Biomedical Research, Mrs. Bernice Gershenson, the M. D. Moross Institute for Cancer Research at the Weizmann Institute of Science, and the Israel Academy of Sciences and Humanities.

Authors

Affiliations

Gad Asher
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
Joseph Lotem
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
Peter Tsvetkov
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
Veronica Reiss
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
Leo Sachs
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
Yosef Shaul*
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel

Notes

*
To whom correspondence should be addressed. E-mail: [email protected].
Contributed by Leo Sachs, October 1, 2003

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Get Access

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    p53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H:quinone oxidoreductase 1
    Proceedings of the National Academy of Sciences
    • Vol. 100
    • No. 25
    • pp. 14601-15285

    Media

    Figures

    Tables

    Other

    Share

    Share

    Share article link

    Share on social media