Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies
Abstract
Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (e.g., lipid vesicles or micelles) demonstrated self-replication properties resembling those of living cells. Combining these approaches, we analyze here the kinetic behavior of small heterogeneous assemblies of spontaneously aggregating molecules, of the type that could form readily under prebiotic conditions. A statistical formalism for mutual rate enhancement is used to numerically simulate the detailed chemical kinetics within such assemblies. We demonstrate that a straightforward set of assumptions about kinetically enhanced recruitment of simple amphiphilic molecules, as well as about the spontaneous growth and splitting of assemblies, results in a complex population behavior. The assemblies manifest a significant degree of homeostasis, resembling the previously predicted quasi-stationary states of biopolymer ensembles (Dyson, F. J. (1982) J. Mol. Evol. 18, 344–350). Such emergent catalysis-driven, compositionally biased entities may be viewed as having rudimentary “compositional genomes.” Our analysis addresses the question of how mutually catalytic metabolic networks, devoid of sequence-based biopolymers, could exhibit transfer of chemical information and might undergo selection and evolution. This computed behavior may constitute a demonstration of natural selection in populations of molecules without genetic apparatus, suggesting a pathway from random molecular assemblies to a minimal protocell.
Acknowledgments
We thank Ora Kedem, Avshalom Elitzur, Luca Peliti, Shmeior Lifson, Yitzhak Pilpel, and Eytan Domany for helpful discussions. This research was supported by the Israel Ministry of Science, the Krupp Foundation, and the Crown Human Genome Center. D.L. is the Ralph and Lois Silver Chair in Neuro-genomics.
References
1
S L Miller Science 117, 528–529 (1953).
2
W R Hargreaves, S Mulvihill, D W Deamer Nature (London) 266, 78–80 (1977).
3
M Rao, J Eichenberg, J Oró J Mol Evol 18, 196–202 (1982).
4
F Dyson Origins of Life (Cambridge Univ. Press, Cambridge, 1999).
5
S Lifson, H Lifson J Theor Biol 199, 425–433 (1999).
6
P Ballester, J Rebek J Am Chem Soc 112, 1249–1250 (1990).
7
T Li, K C Nicolaou Nature (London) 369, 218–221 (1994).
8
D Sievers, G Von-Kiedrowski Nature (London) 369, 221–224 (1994).
9
D H Lee, J R Granja, J A Martinez, K Severin, M R Ghadiri Nature (London) 382, 525–528 (1996).
10
M Eigen, P Schuster J Mol Evol 19, 47–61 (1982).
11
B Küppers Molecular Theory of Evolution (Springer, Berlin, 1983).
12
D L Stein, P W Anderson Proc Natl Acad Sci USA 81, 1751–1753 (1984).
13
L E Orgel Nature (London) 358, 203–209 (1992).
14
T R Cech Gene 135, 33–36 (1993).
15
J W Szostak Trends Biochem Sci 17, 89–93 (1992).
16
M C Wright, G F Joyce Science 276, 614–617 (1997).
17
R Shapiro Origins Life Evol Biosphere 14, 565–570 (1984).
18
A I Oparin The Origin of Life (Dover, New York, 1953).
19
A I Oparin, K L Gladilin BioSystems 12, 133–145 (1980).
20
F J Dyson J Mol Evol 18, 344–350 (1982).
21
S A Kauffman J Theor Biol 119, 1–24 (1986).
22
J D Farmer, S A Kauffman, N H Packard Physica D 22, 50–67 (1986).
23
H J Morowitz, B Heinz, D W Deamer Origins Life Evol Biosphere 18, 281–287 (1988).
24
R J Bagley, J D Farmer, W Fontana Artificial Life II, eds C G Langton, C Taylor, J D Farmer, S Rasmussen (Addison–Wesley, Reading, MA) X, 141–158 (1991).
25
P F Stadler, W Fontana, J H Miller Physica D 63, 378–392 (1993).
26
W Fontana, L W Buss Proc Natl Acad Sci USA 91, 757–761 (1994).
27
C Tanford Science 200, 1012–1018 (1978).
28
P L Luisi, P Walde, T Oberholzer Ber Bunsenges Phys Chem 98, 1160–1165 (1994).
29
D W Deamer Microbiol Mol Biol Rev 61, 239–261 (1997).
30
P Walde, A Goto, P A Monnard, M Wessicken, P L Luisi J Am Chem Soc 116, 7541–7547 (1994).
31
P Bachmann, P Luisi, J Lang Nature (London) 357, 57–59 (1992).
32
B Mayer, S Rasmussen Int J Mod Phys C 9, 157–177 (1998).
33
F J Varela, H R Maturana, R Uribe BioSystems 5, 187–196 (1974).
34
D Segré, D Lancet Mutually Catalytic Amphiphiles: Simulated Chemical Evolution and Implications to Exobiology, eds J Chela-Flores, F Raulin (Kluwer, Trieste, Italy), pp. 123–131 (1998).
35
Segré, D., Ben-Eli, D., Deamer, D. & Lancet, D. (2000) Origins Life Evol. Biosphere, in press.
36
G Wächtershauser Proc Natl Acad Sci USA 87, 200–204 (1990).
37
A I Oparin The Origin of Life on the Earth (Oliver and Boyd, London, 1957).
38
D Segré, Y Pilpel, D Lancet Physica A 249, 558–564 (1998).
39
D Segré, D Lancet, O Kedem, Y Pilpel Origins Life Evol Biosphere 28, 501–514 (1998).
40
B-O Kuppers Information and the Origin of Life (MIT Press, Cambridge, MA, 1990).
41
M Eigen, P Schuster The Hypercycle (Springer, Berlin, 1979).
42
H J Morowitz Beginnings of Cellular Life (Yale Univ. Press, New Haven, 1992).
43
M Bolli, R Micura, A Eschenmoser Chem Biol 4, 309–320 (1997).
44
G Ourisson, Y Nakatani Chem Biol 1, 11–23 (1994).
45
D W Deamer Origins Life Evol Biosphere 19, 21–38 (1989).
46
R J Bagley, J D Farmer Artificial Life II, eds C G Langton, C Taylor, J D Farmer, S Rasmussen (Addison–Wesley, Reading, MA) X, 93–140 (1991).
47
S Jain, S Krishna Phys Rev Lett 81, 5684–5687 (1998).
48
P F Devaux Annu Rev Biophys Biomol Struct 21, 417–439 (1992).
49
P R Kust, J F Rathman Langmuir 11, 3007–3012 (1995).
50
I M Cuccovia, F H Quina, H Chaimovich Tetrahedron 38, 917–920 (1982).
51
R Talhout, B F N Engberts Langmuir 13, 5001–5006 (1997).
52
J H Fendler Membrane Mimetic Chemistry (Wiley, New York, 1982).
53
F K von-Gottberg, K A Smith, T A Hatton J Chem Phys 106, 9850–9857 (1997).
54
P G Bolhuis, D Frenkel Physica A 244, 45–58 (1997).
55
A Pohorille, M A Wilson Origins Life Evol Biosphere 25, 21–46 (1995).
56
D Segré, D Lancet Chemtracts Biochem Mol Biol 12, 382–397 (1999).
57
D Lancet, E Sadovsky, E Seidemann Proc Natl Acad Sci USA 90, 3715–3719 (1993).
58
D Lancet, O Kedem, Y Pilpel Ber Bunsenges Phys Chem 98, 1166–1169 (1994).
59
S A Safran Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison–Wesley, Reading, MA, 1994).
60
H Nygren Adv Colloid Interface Sci 62, 137–159 (1995).
61
M Rusanen, I Koponen, J Heinonen, J Sillanpaa Nuclear Instru Methods Phys Res B 148, 116–120 (1999).
62
K Hamano, H Ushiki, F Tsunomori, J V Sengers Int J Thermophys 18, 379–386 (1997).
63
D T Gillespie Physica A 95, 69–103 (1979).
64
T Buhse, V Pimienta, D Lavabre, J-C Micheau J Chem Phys 101, 5215–5217 (1997).
65
H J Morowitz Energy Flow in Biology (Academic, New York, 1979).
66
G Nicolis, I Prigogine Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, Toronto, 1977).
67
N Lahav Biogenesis: Theories of Life's Origin (Oxford Univ. Press, Oxford, 1999).
68
D T Gillespie J Phys Chem 81, 2340–2361 (1977).
Information & Authors
Information
Published in
Classifications
Copyright
Copyright © 2000, The National Academy of Sciences.
Submission history
Received: September 2, 1999
Accepted: January 28, 2000
Published online: April 11, 2000
Published in issue: April 11, 2000
Acknowledgments
We thank Ora Kedem, Avshalom Elitzur, Luca Peliti, Shmeior Lifson, Yitzhak Pilpel, and Eytan Domany for helpful discussions. This research was supported by the Israel Ministry of Science, the Krupp Foundation, and the Crown Human Genome Center. D.L. is the Ralph and Lois Silver Chair in Neuro-genomics.
Authors
Metrics & Citations
Metrics
Citation statements
Altmetrics
Citations
Cite this article
Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies, Proc. Natl. Acad. Sci. U.S.A.
97 (8) 4112-4117,
https://doi.org/10.1073/pnas.97.8.4112
(2000).
Copied!
Copying failed.
Export the article citation data by selecting a format from the list below and clicking Export.
Cited by
Loading...
View Options
View options
PDF format
Download this article as a PDF file
DOWNLOAD PDFLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginRecommend to a librarian
Recommend PNAS to a LibrarianPurchase options
Purchase this article to access the full text.