Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies

April 11, 2000
97 (8) 4112-4117

Abstract

Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (e.g., lipid vesicles or micelles) demonstrated self-replication properties resembling those of living cells. Combining these approaches, we analyze here the kinetic behavior of small heterogeneous assemblies of spontaneously aggregating molecules, of the type that could form readily under prebiotic conditions. A statistical formalism for mutual rate enhancement is used to numerically simulate the detailed chemical kinetics within such assemblies. We demonstrate that a straightforward set of assumptions about kinetically enhanced recruitment of simple amphiphilic molecules, as well as about the spontaneous growth and splitting of assemblies, results in a complex population behavior. The assemblies manifest a significant degree of homeostasis, resembling the previously predicted quasi-stationary states of biopolymer ensembles (Dyson, F. J. (1982) J. Mol. Evol. 18, 344–350). Such emergent catalysis-driven, compositionally biased entities may be viewed as having rudimentary “compositional genomes.” Our analysis addresses the question of how mutually catalytic metabolic networks, devoid of sequence-based biopolymers, could exhibit transfer of chemical information and might undergo selection and evolution. This computed behavior may constitute a demonstration of natural selection in populations of molecules without genetic apparatus, suggesting a pathway from random molecular assemblies to a minimal protocell.

Continue Reading

Acknowledgments

We thank Ora Kedem, Avshalom Elitzur, Luca Peliti, Shmeior Lifson, Yitzhak Pilpel, and Eytan Domany for helpful discussions. This research was supported by the Israel Ministry of Science, the Krupp Foundation, and the Crown Human Genome Center. D.L. is the Ralph and Lois Silver Chair in Neuro-genomics.

References

1
S L Miller Science 117, 528–529 (1953).
2
W R Hargreaves, S Mulvihill, D W Deamer Nature (London) 266, 78–80 (1977).
3
M Rao, J Eichenberg, J Oró J Mol Evol 18, 196–202 (1982).
4
F Dyson Origins of Life (Cambridge Univ. Press, Cambridge, 1999).
5
S Lifson, H Lifson J Theor Biol 199, 425–433 (1999).
6
P Ballester, J Rebek J Am Chem Soc 112, 1249–1250 (1990).
7
T Li, K C Nicolaou Nature (London) 369, 218–221 (1994).
8
D Sievers, G Von-Kiedrowski Nature (London) 369, 221–224 (1994).
9
D H Lee, J R Granja, J A Martinez, K Severin, M R Ghadiri Nature (London) 382, 525–528 (1996).
10
M Eigen, P Schuster J Mol Evol 19, 47–61 (1982).
11
B Küppers Molecular Theory of Evolution (Springer, Berlin, 1983).
12
D L Stein, P W Anderson Proc Natl Acad Sci USA 81, 1751–1753 (1984).
13
L E Orgel Nature (London) 358, 203–209 (1992).
14
T R Cech Gene 135, 33–36 (1993).
15
J W Szostak Trends Biochem Sci 17, 89–93 (1992).
16
M C Wright, G F Joyce Science 276, 614–617 (1997).
17
R Shapiro Origins Life Evol Biosphere 14, 565–570 (1984).
18
A I Oparin The Origin of Life (Dover, New York, 1953).
19
A I Oparin, K L Gladilin BioSystems 12, 133–145 (1980).
20
F J Dyson J Mol Evol 18, 344–350 (1982).
21
S A Kauffman J Theor Biol 119, 1–24 (1986).
22
J D Farmer, S A Kauffman, N H Packard Physica D 22, 50–67 (1986).
23
H J Morowitz, B Heinz, D W Deamer Origins Life Evol Biosphere 18, 281–287 (1988).
24
R J Bagley, J D Farmer, W Fontana Artificial Life II, eds C G Langton, C Taylor, J D Farmer, S Rasmussen (Addison–Wesley, Reading, MA) X, 141–158 (1991).
25
P F Stadler, W Fontana, J H Miller Physica D 63, 378–392 (1993).
26
W Fontana, L W Buss Proc Natl Acad Sci USA 91, 757–761 (1994).
27
C Tanford Science 200, 1012–1018 (1978).
28
P L Luisi, P Walde, T Oberholzer Ber Bunsenges Phys Chem 98, 1160–1165 (1994).
29
D W Deamer Microbiol Mol Biol Rev 61, 239–261 (1997).
30
P Walde, A Goto, P A Monnard, M Wessicken, P L Luisi J Am Chem Soc 116, 7541–7547 (1994).
31
P Bachmann, P Luisi, J Lang Nature (London) 357, 57–59 (1992).
32
B Mayer, S Rasmussen Int J Mod Phys C 9, 157–177 (1998).
33
F J Varela, H R Maturana, R Uribe BioSystems 5, 187–196 (1974).
34
D Segré, D Lancet Mutually Catalytic Amphiphiles: Simulated Chemical Evolution and Implications to Exobiology, eds J Chela-Flores, F Raulin (Kluwer, Trieste, Italy), pp. 123–131 (1998).
35
Segré, D., Ben-Eli, D., Deamer, D. & Lancet, D. (2000) Origins Life Evol. Biosphere, in press.
36
G Wächtershauser Proc Natl Acad Sci USA 87, 200–204 (1990).
37
A I Oparin The Origin of Life on the Earth (Oliver and Boyd, London, 1957).
38
D Segré, Y Pilpel, D Lancet Physica A 249, 558–564 (1998).
39
D Segré, D Lancet, O Kedem, Y Pilpel Origins Life Evol Biosphere 28, 501–514 (1998).
40
B-O Kuppers Information and the Origin of Life (MIT Press, Cambridge, MA, 1990).
41
M Eigen, P Schuster The Hypercycle (Springer, Berlin, 1979).
42
H J Morowitz Beginnings of Cellular Life (Yale Univ. Press, New Haven, 1992).
43
M Bolli, R Micura, A Eschenmoser Chem Biol 4, 309–320 (1997).
44
G Ourisson, Y Nakatani Chem Biol 1, 11–23 (1994).
45
D W Deamer Origins Life Evol Biosphere 19, 21–38 (1989).
46
R J Bagley, J D Farmer Artificial Life II, eds C G Langton, C Taylor, J D Farmer, S Rasmussen (Addison–Wesley, Reading, MA) X, 93–140 (1991).
47
S Jain, S Krishna Phys Rev Lett 81, 5684–5687 (1998).
48
P F Devaux Annu Rev Biophys Biomol Struct 21, 417–439 (1992).
49
P R Kust, J F Rathman Langmuir 11, 3007–3012 (1995).
50
I M Cuccovia, F H Quina, H Chaimovich Tetrahedron 38, 917–920 (1982).
51
R Talhout, B F N Engberts Langmuir 13, 5001–5006 (1997).
52
J H Fendler Membrane Mimetic Chemistry (Wiley, New York, 1982).
53
F K von-Gottberg, K A Smith, T A Hatton J Chem Phys 106, 9850–9857 (1997).
54
P G Bolhuis, D Frenkel Physica A 244, 45–58 (1997).
55
A Pohorille, M A Wilson Origins Life Evol Biosphere 25, 21–46 (1995).
56
D Segré, D Lancet Chemtracts Biochem Mol Biol 12, 382–397 (1999).
57
D Lancet, E Sadovsky, E Seidemann Proc Natl Acad Sci USA 90, 3715–3719 (1993).
58
D Lancet, O Kedem, Y Pilpel Ber Bunsenges Phys Chem 98, 1166–1169 (1994).
59
S A Safran Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison–Wesley, Reading, MA, 1994).
60
H Nygren Adv Colloid Interface Sci 62, 137–159 (1995).
61
M Rusanen, I Koponen, J Heinonen, J Sillanpaa Nuclear Instru Methods Phys Res B 148, 116–120 (1999).
62
K Hamano, H Ushiki, F Tsunomori, J V Sengers Int J Thermophys 18, 379–386 (1997).
63
D T Gillespie Physica A 95, 69–103 (1979).
64
T Buhse, V Pimienta, D Lavabre, J-C Micheau J Chem Phys 101, 5215–5217 (1997).
65
H J Morowitz Energy Flow in Biology (Academic, New York, 1979).
66
G Nicolis, I Prigogine Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, Toronto, 1977).
67
N Lahav Biogenesis: Theories of Life's Origin (Oxford Univ. Press, Oxford, 1999).
68
D T Gillespie J Phys Chem 81, 2340–2361 (1977).

Information & Authors

Information

Published in

The cover image for PNAS Vol.97; No.8
Proceedings of the National Academy of Sciences
Vol. 97 | No. 8
April 11, 2000
PubMed: 10760281

Classifications

Submission history

Received: September 2, 1999
Accepted: January 28, 2000
Published online: April 11, 2000
Published in issue: April 11, 2000

Acknowledgments

We thank Ora Kedem, Avshalom Elitzur, Luca Peliti, Shmeior Lifson, Yitzhak Pilpel, and Eytan Domany for helpful discussions. This research was supported by the Israel Ministry of Science, the Krupp Foundation, and the Crown Human Genome Center. D.L. is the Ralph and Lois Silver Chair in Neuro-genomics.

Authors

Affiliations

Daniel Segré
Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, 76100 Rehovot, Israel
Dafna Ben-Eli
Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, 76100 Rehovot, Israel
Doron Lancet
Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, 76100 Rehovot, Israel

Notes

To whom reprint requests should be addressed. E-mail: [email protected].
Communicated by Samuel Karlin, Stanford University, Stanford, CA

Metrics & Citations

Metrics

Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


Citation statements

Altmetrics

Citations

Export the article citation data by selecting a format from the list below and clicking Export.

Cited by

    Loading...

    View Options

    View options

    PDF format

    Download this article as a PDF file

    DOWNLOAD PDF

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Personal login Institutional Login

    Recommend to a librarian

    Recommend PNAS to a Librarian

    Purchase options

    Purchase this article to access the full text.

    Single Article Purchase

    Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies
    Proceedings of the National Academy of Sciences
    • Vol. 97
    • No. 8
    • pp. 3783-4410

    Figures

    Tables

    Media

    Share

    Share

    Share article link

    Share on social media