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Understanding the genetic basis of HIV-1 drug resistance is essen-
tial to developing new antiretroviral drugs and optimizing the use
of existing drugs. This understanding, however, is hampered by
the large numbers of mutation patterns associated with cross-
resistance within each antiretroviral drug class. We used five
statistical learning methods (decision trees, neural networks, sup-
port vector regression, least-squares regression, and least angle
regression) to relate HIV-1 protease and reverse transcriptase
mutations to in vitro susceptibility to 16 antiretroviral drugs.
Learning methods were trained and tested on a public data set of
genotype–phenotype correlations by 5-fold cross-validation. For
each learning method, four mutation sets were used as input
features: a complete set of all mutations in >2 sequences in the
data set, the 30 most common data set mutations, an expert panel
mutation set, and a set of nonpolymorphic treatment-selected
mutations from a public database linking protease and reverse
transcriptase sequences to antiretroviral drug exposure. The non-
polymorphic treatment-selected mutations led to the best predic-
tions: 80.1% accuracy at classifying sequences as susceptible,
low�intermediate resistant, or highly resistant. Least angle regres-
sion predicted susceptibility significantly better than other meth-
ods when using the complete set of mutations. The three regres-
sion methods provided consistent estimates of the quantitative
effect of mutations on drug susceptibility, identifying nearly all
previously reported genotype–phenotype associations and provid-
ing strong statistical support for many new associations. Mutation
regression coefficients showed that, within a drug class, cross-
resistance patterns differ for different mutation subsets and that
cross-resistance has been underestimated.

antiviral therapy � HIV � linear regression � machine learning

Twenty antiretroviral drugs are approved for treating HIV-1
infection: eight protease inhibitors (PIs), seven nucleoside and

one nucleotide reverse transcriptase (RT) inhibitors (NRTIs), three
nonnucleoside RT inhibitors (NNRTIs), and one fusion inhibitor.
Resistance to these drugs is caused by mutations in their molecular
targets. Understanding the genetic basis of cross-resistance is
essential for designing new antiviral drugs and for using genotypic
drug resistance testing to select optimal therapy. Despite the large
number of PIs and RT inhibitors, therapy is challenging because
drug resistance arises from complex patterns of mutations and
because of the high degree of cross-resistance within each drug
class.

Approaches for using HIV-1 drug resistance mutations to predict
changes in drug susceptibility have included decision trees (1),
linear regression (2), linear discriminant analysis (3), neural net-
works (4), and support vector regression (SVR) (5). Here, we
compare five statistical learning methods each using four different
sets of input mutations to develop quantitative models associating
HIV-1 protease and RT mutations with changes in susceptibility to
16 antiretroviral drugs. The analyses are performed on a curated
publicly available data set (6) generated with a highly reproducible
drug susceptibility assay (7, 8). The results provide insight into the
performance of different statistical learning methods at predicting
phenotypic characteristics of highly polymorphic proteins and into
the genetic mechanisms of HIV-1 antiretroviral cross-resistance.

Results
Drug Susceptibility Results, Input Mutations, and Learning Methods.
For each of the three drug classes, we created four mutation sets
that included (i) a complete set of all mutations present in �2
sequences, (ii) an expert panel mutation set (9), and (iii) a set of
nonpolymorphic treatment-selected mutations (TSMs) derived
from a database linking protease and RT sequences to the treat-
ment histories of persons from whom the sequenced viruses were
obtained (10) (Table 1). A control set of the 30 most common
mutations in the data set was also created (see Supporting Text,
which is published as supporting information on the PNAS web
site). Predictions using these 30 mutations were consistently inferior
to those using the other three mutation sets (data not shown).

Table 2 shows the number of isolates for which sequences and
susceptibility results were available. Thirty-seven to 60% of isolates
had reduced drug susceptibility to one or more PIs. Thirty-one to
70% had reduced drug susceptibility to one or more NRTIs.
Thirty-three to 41% had reduced drug susceptibility to one or more
NNRTIs. The distribution in the number of nonpolymorphic TSMs
and expert panel mutations per isolate is shown in Fig. 2, which is
published as supporting information on the PNAS web site.

We applied five statistical learning methods [decision trees,
neural networks, least-squares regression (LSR), SVR, and least
angle regression (LARS)] to classify isolates as susceptible, low�
intermediate, or highly resistant to the drugs used for testing. The
regression methods were used to predict the level of reduced drug
susceptibility for each isolate.

Classification. The mean prediction accuracy (5 methods � 3
mutation sets) was highest for the NNRTIs (83.0%) compared with
the PIs (78.2%; P � 0.001) and NRTIs (75.9%; P � 0.001) (Table
3). Among the PIs, the highest accuracy was for ritonavir (85.4%)
and the lowest was for atazanavir (70.6%), the PI with the fewest
test results. Among the NRTIs, the highest accuracies were for
lamivudine (88.6%) and the lowest were for tenofovir (TDF)
(67.7%), the NRTI with the fewest test results. There was minimal
variation in prediction accuracy among the NNRTIs.

When the prediction accuracies of the possible combinations
of drug and learning method were averaged over the different
mutation sets, the mean accuracies of the learning methods
ranged from 76.1% (neural networks) to 79.7% (LARS). The
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superiority of LARS was due to its accuracy in using the
complete mutation set (80.3%), which was significantly higher
than decision trees (77.2%; P � 0.02), SVR (76.1%; P � 0.001),
neural networks (74.6%; P � 0.001), and LSR (72.3%; P �
0.001). Regression methods (79.9%) had higher accuracy for the
PIs than the decision tree and neural network methods (75.5%;
P � 0.001).

Averaged over the different learning methods and drugs, the
nonpolymorphic TSM set had the highest prediction accuracy
(80.1%) followed by the expert panel (77.5%; P � 0.001) and
complete mutation set (76.1%; P � 0.001). However, the use of all
of the expert panel mutations for a drug class (pooling the muta-
tions associated with all of the drugs of a class) increased the
accuracy from 77.5% to 79.3%.

Table 4, which is published as supporting information on the
PNAS web site, shows the number of highly discordant results
according to the mutation data set and learning method. For 10,624

predictions obtained by applying LARS to the nonpolymorphic
TSM data set, only 33 (0.31%) were highly discordant with the
measured phenotype (Table 5, which is published as supporting
information on the PNAS web site).

Regression. The TSM set had the highest correlation coefficients
(r2) between actual and predicted susceptibility compared with the
complete and expert panel mutation set (Table 6, which is published
as supporting information on the PNAS web site). The r2 values for
the TSM set determined by SVR, LSR, and LARS ranged from
0.83 to 0.84 averaged over the PIs, 0.76 to 0.77 averaged over the
NRTIs, and 0.77 to 0.79 averaged over the NNRTIs.

Averaged over each of the 16 drugs and the three regression
methods, the mean-squared errors (MSEs) were 0.22 for the TSMs
and 0.32 for the expert panel mutations (Table 7, which is published
as supporting information on the PNAS web site). However, the use
of the complete set of expert panel mutations for a drug class
reduced the overall MSE from 0.32 to 0.26. The MSEs of the
regression methods using the TSMs were inversely proportional to
the number of samples used for testing and training (Fig. 3, which
is published as supporting information on the PNAS web site).

Regression coefficients for each of the PI, NRTI, and NNRTI
TSMs determined by the different regression methods were highly
correlated (Tables 8–10 and Fig. 4, which are published as sup-
porting information on the PNAS web site). For the PIs, the mean
r2 between the LSR and SVR coefficients was 0.98 and between
LSR and LARS was 0.96. For the NRTIs, the mean r2 between LSR
and SVR was 0.94 and between LSR and LARS was 0.91.

PI-Resistance Mutations. Fig. 1A shows the LSR coefficients for 35
PI TSMs occurring in �10 sequences and significantly associated
with decreased susceptibility to one or more PIs (regression coef-
ficient �3.0 standard deviations above or below 0). The substrate
cleft mutations G48V and I84V; the flap mutations I54V and
Q58E; and the mutations L24I, G73S, and L90M were associated
with decreased susceptibility to all seven PIs. The substrate cleft
mutations V32I, I50V, and V82A�T�F; the flap mutations K43T,
M46I�L, I47V, F53L, and I54M�L; and the mutations L10F,
K20I�T, G73T, T74S, and N88D�S were associated with decreased
susceptibility to four or more PIs.

The TSM coefficients provided quantitative confirmation of
each nonpolymorphic expert panel mutation. In addition, six non-
expert-panel TSMs (V11I, K43T, Q58E, T74S, L76V, and L89V)
were significantly associated with decreased susceptibility to one or
more PIs.

NRTI- and NNRTI-Resistance Mutations. Fig. 1B shows the LSR
regression coefficients for 23 NRTI TSMs occurring in �10 se-

Table 1. Sets of protease and RT mutations used as input features for predicting drug susceptibility

Mutation set Description Mutations

Complete Mutations occurring � 2 times in the data set PIs: 225 mutations at 70 positions.
NRTIs: 371 mutations at 132 positions.

Expert panel IAS-USA mutation panel (9). The complete list
of mutations for each drug class is shown
here. The subset of mutations associated
with each drug in the primary publication
was used for prediction.

PIs: 10F�I�R�V; 16E; 20M�R�I; 24I; 30N; 32I; 33F�I�V; 36I�L�V; 46I�L; 47V�A; 48V; 50V�L; 53L;
54V�M�L�A�T�S; 60E; 62V; 63P; 71V�T�I�L; 73S�A�C�T; 74P; 77I; 82A�F�T�S; 84V; 85V;
88D�S; 90M; 93L

NRTIs: 41L; 44D; 62V; 65R; 67N; 69ins; 70R; 74V; 75I; 77L; 115F; 116Y; 118I; 151M; 184V�I;
210W; 215Y�F; 219Q�E

NNRTIs: 100I; 103N; 106M�A; 108I; 181C�I; 188L�C�H; 190S�A; 225H; 230L; 236L
Nonpolymorphic

TSMs
Nonpolymorphic mutations significantly

more common in treated compared with
untreated persons (10)

PIs: 10F�R; 11I; 20I�T�V; 23I; 24I; 30N; 32I; 33F; 34Q; 35G; 43T; 46I�L�V; 47A�V; 48M�V; 50L�V;
53L�Y; 54A�L�M�S�T�V; 55R; 58E; 66F; 67F; 71I; 73A�C�S�T; 74A�P�S; 76V; 79A; 82A�F�S�T;
84A�C�V; 85V; 88D�S�T; 89V; 90M; 92R; 95F

NRTIs: 41L; 43E�N�Q; 44A�D; 62V; 65R; 67E�G�N; 69D�N�S�ins; 70R; 74I�V; 75I�M�T; 77L; 98G;
115F; 116Y; 151M; 184I�V; 203K; 208Y; 210W; 215F�I�V�Y; 218E; 219E�N�Q�R; 223Q;
228H�R

NNRTIs: 100I; 101E�N�P; 103N�S; 106A�M; 108I; 138Q; 181C�I�V; 188C�H�L; 190A�E�Q�S;
221Y; 225H; 227L; 230L; 236L; 238T

IAS-USA, International AIDS Society–USA.

Table 2. Summary of HIV-1 isolates with genotype and
phenotype correlations according to drug tested and level
of resistance

Isolate phenotypes*

Drug Susc, % Low�int, % High, % Total

Protease inhibitors
Amprenavir (APV) 61 29 10 768
Atazanavir (ATV) 48 30 22 329
Indinavir (IDV) 51 28 21 827
Lopinavir (LPV) 45 23 32 517
Nelfinavir (NFV) 40 25 35 844
Ritonavir (RTV) 48 20 32 795
Saquinavir (SQV) 60 18 22 826

Nucleoside RT inhibitors
Lamivudine (3TC) 32 15 53 633
Abacavir (ABC) 30 45 25 628
Zidovudine (AZT) 52 23 25 630
Stavudine (D4T) 57 28 15 630
Didanosine (DDI) 56 37 7 632
Tenofovir (TDF) 70 18 12 353

Nonnucleoside RT inhibitors
Delavirdine (DLV) 64 14 21 732
Efavirenz (EFV) 64 16 22 734
Nevirapine (NVP) 56 7 37 746

*Susc, susceptible; Low�int, low�intermediate; High, high-level. The cut-offs
(levels of fold-decreased susceptibility) for distinguishing susceptible from
low�intermediate resistance and low�intermediate from high-level resis-
tance are described in Methods.

17356 � www.pnas.org�cgi�doi�10.1073�pnas.0607274103 Rhee et al.
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quences and significantly associated with decreased susceptibility to
one or more NRTIs. The TSM coefficients provided quantitative
confirmation of each nonpolymorphic expert panel mutation. In
addition, 8 non-expert-panel TSMs (K43E�Q, V75M�T, E203K,
D218E, K219R, and L228H) decreased susceptibility to one or
more NRTIs. As previously reported, M184V increased suscepti-
bility to zidovudine (AZT), stavudine (d4T), and TDF; L74V
increased susceptibility to AZT and TDF; and K65R increased
susceptibility to AZT (11–13).

The LSR coefficients for 24 NNRTI TSMs occurring in �2
sequences and associated with decreased susceptibility to one or
more NNRTIs are shown in Table 10. Most mutations decreased
susceptibility to each of the NNRTIs. Seven non-expert-panel
TSMs (K101E�P, K103S, Y181V, G190E�Q, and K238T) de-
creased susceptibility to one or more NNRTIs.

To explore the effect of NNRTI-resistance mutations on NRTI
susceptibility and NRTI-resistance mutations on NNRTI suscep-
tibility, we used LSR and the combined set of NRTI and NNRTI
TSMs to predict both NRTI and NNRTI susceptibility. Two
NNRTI-resistance mutations, L100I and Y181C, had significantly
negative regression coefficients for AZT (�0.45 and �0.45) and
TDF (�0.43 and �0.33) consistent with previous reports (12, 14).
Five NRTI-resistance mutations had significantly negative regres-
sion coefficients for efavirenz (EFV) including M41L, D67N,
M184V, L210W, and K219Q (range of �0.08 to �0.17), consistent
with previous reports (15).

Discussion
Association studies with HIV-1 genotype are complicated by the
high dimensionality of the data caused by HIV-1’s high mutation
rate. We used several types of external feature selection to limit the
dimensionality of HIV-1 genotypic data and five statistical learning
methods to create models of how genotype influences susceptibility.
LARS, the only regression method that performed its own feature
selection, was superior to the other regression methods at predicting
decreased susceptibility in the absence of external feature selection

(i.e., using the complete set of mutations present in �2 sequences
in the data set). However, LARS was not superior to the other
regression methods when externally derived features were used.

The most successful approach to external feature selection was to
use a set of mutations previously identified as absent in viruses from
treatment-naı̈ve individuals and occurring at significantly increased
frequencies in viruses from treated individuals (10). This set of
nonpolymorphic TSMs had the highest accuracy (80.1%) averaged
over the five learning methods when classifying isolates as suscep-
tible, low�intermediate, and high-level resistant, and had the lowest
MSEs compared with the other mutation data sets when used for
regression. The success of TSMs at predicting susceptibility follows
from Darwinian principles: the TSMs emerge during therapy
presumably because they facilitate virus escape from drug inhibi-
tion. Exploiting the results of an analysis on a separate data set
containing genotype-treatment correlations thus proved superior to
relying completely on the genotype–phenotype data set to predict
phenotype.

The fact that prediction accuracy was lowest for the drugs
(atazanavir and TDF) with the fewest samples suggests that accu-
racy depends to a large extent on sample size. The learning curves
show that for most drugs, �400 genotype–phenotype examples
were required for optimal predictive accuracy and that the MSE
then saturates at 0.15–0.20, suggesting that factors other than TSMs
influence susceptibility. For example, polymorphic sites influence
susceptibility either directly or indirectly by affecting virus replica-
tion capacity (16). In addition, protease cleavage site mutations,
primarily those in the gag gene, also influence viral replication
capacity and drug susceptibility (17).

Although it is likely that the effect of individual mutations on
drug susceptibility depends on the presence of other mutations, we
did not demonstrate an improvement in predictive accuracy using
a LARS regression model that included all possible two-way
interactions or using a polynomial kernel for SVR (data not shown).
This may be because the process of exploring interactions without
model selection to choose sets of interacting mutations often leads

Table 3. Predictive accuracy of LSR, SVR, LARS, decision trees, and neural networks using the nonpolymorphic TSMs, complete set
(Comp), and expert panel mutations (Expert)

Drug*

LSR SVR LARS Decision trees Neural networks

Drug mean†TSM Comp Expert TSM Comp Expert TSM Comp Expert TSM Comp Expert TSM Comp Expert

Protease inhibitors
APV 0.84 0.81 0.8 0.84 0.82 0.8 0.84 0.81 0.8 0.78 0.77 0.77 0.76 0.74 0.76 0.80
ATV 0.77 0.68 0.73 0.76 0.69 0.73 0.77 0.76 0.7 0.65 0.71 0.65 0.7 0.64 0.65 0.71
IDV 0.79 0.78 0.75 0.79 0.77 0.76 0.79 0.77 0.75 0.75 0.75 0.75 0.76 0.73 0.71 0.76
LPV 0.81 0.79 0.82 0.81 0.8 0.83 0.81 0.83 0.81 0.74 0.77 0.73 0.76 0.76 0.73 0.79
NFV 0.82 0.79 0.74 0.82 0.79 0.76 0.81 0.8 0.73 0.8 0.76 0.8 0.77 0.73 0.73 0.78
RTV 0.89 0.86 0.85 0.89 0.86 0.86 0.88 0.88 0.86 0.85 0.84 0.84 0.82 0.81 0.82 0.85
SQV 0.84 0.81 0.76 0.85 0.81 0.77 0.82 0.82 0.74 0.8 0.75 0.77 0.8 0.76 0.75 0.79
Avg‡ 0.82 0.79 0.78 0.82 0.79 0.79 0.82 0.81 0.77 0.77 0.76 0.76 0.77 0.74 0.74 0.78

Nucleoside RT inhibitors
3TC 0.89 0.83 0.87 0.88 0.84 0.87 0.87 0.88 0.88 0.92 0.9 0.92 0.92 0.9 0.92 0.89
ABC 0.77 0.63 0.77 0.77 0.65 0.77 0.78 0.77 0.78 0.74 0.69 0.75 0.71 0.66 0.71 0.73
AZT 0.78 0.64 0.74 0.78 0.7 0.75 0.77 0.76 0.72 0.71 0.7 0.72 0.73 0.71 0.71 0.73
D4T 0.8 0.66 0.78 0.8 0.68 0.78 0.79 0.78 0.79 0.76 0.75 0.77 0.75 0.72 0.76 0.76
DDI 0.77 0.61 0.73 0.77 0.67 0.73 0.77 0.75 0.74 0.75 0.74 0.75 0.72 0.71 0.71 0.73
TDF 0.76 0.46 0.66 0.76 0.69 0.66 0.72 0.7 0.65 0.69 0.68 0.67 0.69 0.73 0.63 0.68
Avg‡ 0.80 0.64 0.76 0.79 0.71 0.76 0.78 0.77 0.76 0.76 0.74 0.76 0.75 0.74 0.74 0.75

Nonnucleoside RT inhibitors
DLV 0.82 0.73 0.82 0.81 0.78 0.78 0.8 0.84 0.82 0.84 0.84 0.82 0.84 0.78 0.82 0.81
EFV 0.86 0.78 0.82 0.86 0.82 0.82 0.85 0.87 0.8 0.85 0.84 0.8 0.84 0.77 0.8 0.83
NVP 0.87 0.74 0.87 0.86 0.78 0.85 0.88 0.87 0.86 0.91 0.91 0.89 0.91 0.81 0.89 0.86
Avg‡ 0.85 0.75 0.84 0.84 0.79 0.82 0.84 0.86 0.83 0.87 0.86 0.84 0.86 0.79 0.84 0.83

Shown is the proportion of phenotypes for which the predicted result matched the actual result: susceptible vs. low�intermediate vs. high-level resistance.
*The list of drug abbreviations is shown in Table 2.
†Mean accuracy for each drug averaged over mutation set and learning method.
‡Mean accuracy for drug class according to mutation set and learning method.
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to decreased performance due to over-fitting. Alternatively, the
main effects may have already included the effects of interactions
because, in clinical virus isolates, only those combinations of
mutations that reduce susceptibility and allow the virus to replicate
are likely to emerge.

The regression coefficients provide evidence for the high level of
cross-resistance within the PI class and identified new mutations
that were associated with decreased susceptibility to one or more
drugs. Because the coefficients were derived from a model in which
susceptibility results were standardized (i.e., corrected for the
different ranges in susceptibility for different drugs), their magni-
tude indicates the mutation’s contribution to resistance relative to
other mutations affecting the same drug and relative to the muta-
tion’s effect on other drugs. The high correlation among the

coefficients derived from three different regression methods sug-
gests that the mutation regression coefficients represent a repro-
ducible effect that is a real property of the data.

Although drugs of the same class shared high levels of cross-
resistance, the patterns of cross-resistance were often different for
different mutations. This may reflect the physical interactions
inhibitors make with more than one part of the target molecule. For
example, PIs bind to four or more binding pockets in the protease
substrate cleft, whereas NRTIs interact with several parts of RT
both before and after being added to a growing DNA chain. The
genetic mechanisms of cross-resistance and of mutational antago-
nism should be exploited in selecting antiretroviral drug regimens
by combining drugs with the least cross-resistance and in designing
new compounds containing moieties that select for antagonistic
mutations.
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Fig. 1. (Figure continues on the opposite page.)
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Methods
HIV-1 Isolates and Genotypes. HIV-1 sequences used for this study
were from publicly available isolates in the Stanford HIV Drug
Resistance Database for which both sequences and in vitro
susceptibility results were available (6). Isolates included viruses
from the plasma of HIV-1-infected persons and laboratory
viruses with drug-resistance mutations resulting from site-
directed mutagenesis or in vitro passage. Up to two isolates from
a small number of individuals were included provided their
isolates differed at two or more drug-resistance positions. Iso-

lates with electrophoretic evidence of more than one amino acid
at a nonpolymorphic drug-resistance position were excluded
from analysis.

Genotypes were derived from the amino acid sequences of
positions 1–99 in protease and 1–240 in RT. Mutations were
defined as amino acid differences from the subtype B consen-
sus wild-type sequence (http:��hivdb.stanford.edu�pages�asi�
releaseNotes�). Mutations were classified as nonpolymorphic
if they occurred with a frequency of �0.5% in untreated
persons.
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Fig. 1. LSR coefficients for PI (A) and NRTI (B) TSMs. Shown are regression coefficients of the LSR models for PI susceptibility using nonpolymorphic PI TSMs
(A) and NRTI using nonpolymorphic NRTI TSMs (B). The y axis indicates the magnitude of the coefficient. Positive coefficients (yellow histograms) indicate
mutations that decrease drug susceptibility; negative coefficients (blue histograms) indicate mutations that increase drug susceptibility. The y axis has no units
because the log-fold susceptibility changes were normalized before regression analysis. The error bars indicate the standard deviation of the mean generalized
error determined 50 times (10 repetitions of 5-fold cross-validation). For the PIs (n � 35) and NRTIs (n � 23), the mutations shown are those that occurred �10
times in the data set and for which the absolute value of the coefficient was �3.0 times the standard deviation for one or more drugs. The regression coefficients
for the PI ritonavir and for the NNRTIs are shown in Tables 8 and 10, respectively.
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Drug Susceptibility Results. For consistency, only susceptibility re-
sults generated by the PhenoSense method (Monogram Bio-
sciences, South San Francisco, CA) were analyzed (7, 8). Drug
susceptibility results were expressed as fold change in susceptibility
defined as the ratio of the IC50 of an isolate and a standard wild-type
control isolate. Results were classified into three categories: sus-
ceptible, low�intermediate resistance, and high-level resistance.
The cut-off between susceptible and low�intermediate resistance
was based on the distribution of results in HIV-1 isolates from
untreated persons lacking drug-resistance mutations (18). The
cut-off between low�intermediate and high-level resistance was
based partly on the drug’s dynamic susceptibility range (fold
difference of the most highly resistance isolates) and partly based
on levels of resistance associated with markedly reduced clinical
activity.

For the PIs, �3.0-fold resistance was considered susceptible, 3.0-
to 20-fold was considered low�intermediate resistant, and �20-fold
was considered highly resistant. For the NNRTIs and the NRTIs
AZT and lamivudine, �3.0-fold resistance was considered suscep-
tible, 3.0- to 25-fold was considered low�intermediate, and �25-
fold was considered highly resistant. For the NRTIs ddI, d4T, and
TDF, a fold resistance of �1.5 was considered susceptible, 1.5–3.0
was considered low�intermediate, and �3.0 was considered highly
resistant. For the NRTI ABC, �2.0-fold resistance was considered
susceptible, 2.0- to 6.0-fold was considered low�intermediate, and
�6.0-fold was considered highly resistant. Susceptibility results
were log-transformed and standardized before analysis.

Prediction Algorithms. Decision trees. The C4.5 algorithm (19) was
used to construct decision trees for the 16 drugs in the study.
Mutations were the attributes, and phenotypic classifications
were the decision variables.
Neural network. Feed-forward neural network models with a sin-
gle hidden layer were trained to predict susceptibility by using the
R package AMORE (http:��cran.r-project.org). The input layer
contained a node for each of the mutation attributes. The hidden
layer was assigned 12 nodes for all drugs. The output layer consisted
of three nodes, one for each of the susceptibility classes. The weights
were learned by using the error back propagation algorithm.
Support vector regression. SVR was used to learn a regression
function of the form: ƒ(x) � ��iK(x,xi) � b, where ƒ(x) is the
logarithm of the fold value for the training sample and x is the
binary vector of mutations (20). K is the kernel function, the
nonzero �i correspond to the support vectors, and b is the bias term.
Both linear and polynomial kernels were used. The latter was used
to model interactions between mutations. SVR was performed with
the PyML package (available at http:��pyml.sourceforge.net).

Linear regression. LSR and LARS (20, 21) were used to predict the
logarithm of the fold decrease in susceptibility. For each of the
regression methods, the coefficients were learned after scaling
the log-fold values to zero mean and unit variance to analyze the
relative impact of a mutation on different drugs. LARS is a
constrained model building procedure similar to the LASSO (23)
that constructs a model by first finding the mutation most corre-
lated with susceptibility and then incrementally builds the model by
following the ‘‘equi-angular vector’’ until another variable is equally
correlated with the residual. The process would eventually termi-
nate at a least-squares solution. However, a validation set (20% of
the data) was used to decide when to stop adding variables to the
model. With LARS, second-order polynomials were also used to
model interactions among each of the input mutations.

Cross-Validation. Five-fold cross-validation was used to determine
the mean generalization accuracy of each learning method on test
data. Five-fold cross-validation was run 10 times on different
subdivisions of the data set to estimate variability of the mean
generalization accuracy. For decision trees, LSR, and SVR, 80% of
the data were used for training and 20% for testing. For neural
networks and LARS, 60% of the data were used for training, 20%
for validating the selected model, and 20% for testing.

Performance Criteria. Accuracy was the proportion of correctly
predicted samples. The regression methods were also evaluated by
using the MSE and r2 between actual and predicted standardized
log-fold values. Both measurements indicate how much of the
variability in the response variable (the standardized log-
transformed reduction susceptibility) was explained by the regres-
sion model.

All comparisons between drug classes, drugs, mutation sets, or
learning methods were done in a pairwise fashion, using paired
differences of the averaged accuracy or MSE for each repeated run
of cross-validation. For instance, the accuracy for mutations sets
was averaged over all drugs and learning methods, resulting in a
single observation per run of cross-validation. A one-sample per-
mutation test on the 10 paired differences was used to ensure the
correct null distribution was used for computing P values.

To assess the effect of the number of training examples (geno-
type–phenotype correlations) on prediction accuracy, we created
sets of randomly selected training examples that were multiples of
50 and ranging in size from 50 to 600 for testing and training using
5-fold cross-validation.
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