TY - JOUR
T1 - Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes
JF - Proceedings of the National Academy of Sciences
JO - Proc Natl Acad Sci USA
SP - E7655
LP - E7662
DO - 10.1073/pnas.1608103113
VL - 113
IS - 48
AU - Baldassi, Carlo
AU - Borgs, Christian
AU - Chayes, Jennifer T.
AU - Ingrosso, Alessandro
AU - Lucibello, Carlo
AU - Saglietti, Luca
AU - Zecchina, Riccardo
Y1 - 2016/11/29
UR - http://www.pnas.org/content/113/48/E7655.abstract
N2 - Artificial neural networks are some of the most widely used tools in data science. Learning is, in principle, a hard problem in these systems, but in practice heuristic algorithms often find solutions with good generalization properties. We propose an explanation of this good performance in terms of a nonequilibrium statistical physics framework: We show that there are regions of the optimization landscape that are both robust and accessible and that their existence is crucial to achieve good performance on a class of particularly difficult learning problems. Building on these results, we introduce a basic algorithmic scheme that improves existing optimization algorithms and provides a framework for further research on learning in neural networks.In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost function. It is not well understood how learning occurs in these systems, in particular how they avoid getting trapped in configurations with poor computational performance. Here, we study the difficult case of networks with discrete weights, where the optimization landscape is very rough even for simple architectures, and provide theoretical and numerical evidence of the existence of rare—but extremely dense and accessible—regions of configurations in the network weight space. We define a measure, the robust ensemble (RE), which suppresses trapping by isolated configurations and amplifies the role of these dense regions. We analytically compute the RE in some exactly solvable models and also provide a general algorithmic scheme that is straightforward to implement: define a cost function given by a sum of a finite number of replicas of the original cost function, with a constraint centering the replicas around a driving assignment. To illustrate this, we derive several powerful algorithms, ranging from Markov Chains to message passing to gradient descent processes, where the algorithms target the robust dense states, resulting in substantial improvements in performance. The weak dependence on the number of precision bits of the weights leads us to conjecture that very similar reasoning applies to more conventional neural networks. Analogous algorithmic schemes can also be applied to other optimization problems.
ER -