RT Journal Article SR Electronic T1 Contacts between the endoplasmic reticulum and other membranes in neurons JF Proceedings of the National Academy of Sciences JO Proc Natl Acad Sci USA FD National Academy of Sciences SP E4859 OP E4867 DO 10.1073/pnas.1701078114 VO 114 IS 24 A1 Wu, Yumei A1 Whiteus, Christina A1 Xu, C. Shan A1 Hayworth, Kenneth J. A1 Weinberg, Richard J. A1 Hess, Harald F. A1 De Camilli, Pietro YR 2017 UL http://www.pnas.org/content/114/24/E4859.abstract AB The cytoplasm of eukaryotic cells is compartmentalized by intracellular membranes that define subcellular organelles. One of these organelles, the endoplasmic reticulum, forms a continuous network of tubules and cisternae that extends throughout all cell compartments, including neuronal dendrites and axons. This network communicates with most other organelles by vesicular transport, and also by contacts that do not lead to fusion but allow cross-talk between adjacent bilayers. Though these membrane contacts have previously been observed in neurons, their distribution and abundance has not been systematically analyzed. Here, we have carried out such analysis. Our studies reveal new aspects of the internal structure of neurons and provide a critical complement to information about interorganelle communication emerging from functional and biochemical studies.Close appositions between the membrane of the endoplasmic reticulum (ER) and other intracellular membranes have important functions in cell physiology. These include lipid homeostasis, regulation of Ca2+ dynamics, and control of organelle biogenesis and dynamics. Although these membrane contacts have previously been observed in neurons, their distribution and abundance have not been systematically analyzed. Here, we have used focused ion beam-scanning electron microscopy to generate 3D reconstructions of intracellular organelles and their membrane appositions involving the ER (distance ≤30 nm) in different neuronal compartments. ER–plasma membrane (PM) contacts were particularly abundant in cell bodies, with large, flat ER cisternae apposed to the PM, sometimes with a notably narrow lumen (thin ER). Smaller ER–PM contacts occurred throughout dendrites, axons, and in axon terminals. ER contacts with mitochondria were abundant in all compartments, with the ER often forming a network that embraced mitochondria. Small focal contacts were also observed with tubulovesicular structures, likely to be endosomes, and with sparse multivesicular bodies and lysosomes found in our reconstructions. Our study provides an anatomical reference for interpreting information about interorganelle communication in neurons emerging from functional and biochemical studies.