TY - JOUR
T1 - Gas production in the Barnett Shale obeys a simple scaling theory
JF - Proceedings of the National Academy of Sciences
JO - Proc Natl Acad Sci USA
DO - 10.1073/pnas.1313380110
SP - 201313380
AU - Patzek, Tad W.
AU - Male, Frank
AU - Marder, Michael
Y1 - 2013/11/13
UR - http://www.pnas.org/content/early/2013/11/12/1313380110.abstract
N2 - Ten years ago, US natural gas cost 50% more than that from Russia. Now, it is threefold less. US gas prices plummeted because of the shale gas revolution. However, a key question remains: At what rate will the new hydrofractured horizontal wells in shales continue to produce gas? We analyze the simplest model of gas production consistent with basic physics of the extraction process. Its exact solution produces a nearly universal scaling law for gas wells in each shale play, where production first declines as 1 over the square root of time and then exponentially. The result is a surprisingly accurate description of gas extraction from thousands of wells in the United Statesâ€™ oldest shale play, the Barnett Shale.Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United Statesâ€™ oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.
ER -