%0 Journal Article
%A Kraynyukova, Nataliya
%A Tchumatchenko, Tatjana
%T Stabilized supralinear network can give rise to bistable, oscillatory, and persistent activity
%D 2018
%R 10.1073/pnas.1700080115
%J Proceedings of the National Academy of Sciences
%P 3464-3469
%V 115
%N 13
%X Many fundamental neural computations from normalization to rhythm generation emerge from the same cortical hardware, but they often require dedicated models to explain each phenomenon. Recently, the stabilized supralinear network (SSN) model has been used to explain a variety of nonlinear integration phenomena such as normalization, surround suppression, and contrast invariance. However, cortical circuits are also capable of implementing working memory and oscillations which are often associated with distinct model classes. Here, we show that the SSN motif can serve as a universal circuit model that is sufficient to support not only stimulus integration phenomena but also persistent states, self-sustained network-wide oscillations along with two coexisting stable states that have been linked with working memory.A hallmark of cortical circuits is their versatility. They can perform multiple fundamental computations such as normalization, memory storage, and rhythm generation. Yet it is far from clear how such versatility can be achieved in a single circuit, given that specialized models are often needed to replicate each computation. Here, we show that the stabilized supralinear network (SSN) model, which was originally proposed for sensory integration phenomena such as contrast invariance, normalization, and surround suppression, can give rise to dynamic cortical features of working memory, persistent activity, and rhythm generation. We study the SSN model analytically and uncover regimes where it can provide a substrate for working memory by supporting two stable steady states. Furthermore, we prove that the SSN model can sustain finite firing rates following input withdrawal and present an exact connectivity condition for such persistent activity. In addition, we show that the SSN model can undergo a supercritical Hopf bifurcation and generate global oscillations. Based on the SSN model, we outline the synaptic and neuronal mechanisms underlying computational versatility of cortical circuits. Our work shows that the SSN is an exactly solvable nonlinear recurrent neural network model that could pave the way for a unified theory of cortical function.
%U https://www.pnas.org/content/pnas/115/13/3464.full.pdf