Table 1

Parameters of rotational constraint on estimates of sea level rise

ζ̇ cm/cy051015Observed
Peltier parameters (7)
log (η Pa s) 21.3 21.4 21.5 21.421.421.4
2 10−11⋅yr−1 −2.5 −3.0 −3.5
τ̇inertia ms/cy −0.43 −0.51 −0.60 −0.10+0.40+0.90−0.39 to −0.60
Polar motionAGAGAG
 |ṁ| m/cy 10.5 9.4 8.3 9.413.99.418.79.423.59.9–10.2
 toward76°W76°W65°W76°W60°W76°W57°W66–75°W
Johnson and Lambeck parameters (10)
ċ20 10−19⋅s−1 2.8 3.5 4.2 3.53.53.53.2 to 5
2 10−11⋅yr−1 −2.0 −2.5 −3.0 −2.5−2.5−2.5
τ̇inertia ms/cy −0.34 −0.43 −0.51 −0.43−0.43−0.43−0.39 to −0.60
log (η Pa s) 21.0 21.1 21.2 21.421.822.2
Polar motionAGAGAG
 |ṁ| m/cy 18 16.5 15 10.68.812.510.310.915.09.9–10.2
 toward 63°W 62.5°W 62°W 78°W48°W75°W21°W72°W8°E66–75°W
  • The four main columns correspond to an assumed rise in sea level by ζ̇ = 0 (rebound only), 5, 10, and 15 cm/cy, respectively, for A, Antarctic and G, Greenland melting. The side columns (italics) for ζ̇ = 0 show the sensitivity to J̇2 (figure 30 of ref. 7, figure 11 of ref. 10). Johnson and Lambeck assume a fixed value of ċ20 = 3.9 × 10−9⋅s−1 (and the associated values J̇2 = −2.5 × 10−11⋅yr−1 and τ̇ = −0.043 ms/cy), yielding the stated deep-mantle log viscosities (figure 12 of ref. 10) and polar motion (figure 13 of ref. 10).